
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

8 May 1945 Guelma University

Faculty of Mathematics, Computer Science and Material Sciences

Department of Computer Science

Laboratory of Information and Communication Sciences and Technologies

THESIS

IN VIEW OF OBTAINING

THE DOCTORATE DEGREE IN 3rd CYCLE

Domain: Mathematics and Computer Science Field: Computer Science

Specialty: Computer Science Systems

Presented by:

Mrs. Karima KHETTABI

Entitled

Distributed Similarity Queries Search in Metric Space

in IoT Systems

Defended: 23/03/2023 In front of the board of examiners composed of:

Mr. Yacine LAFIFI Prof. Univ. of 8 May 1945, Guelma Chairman

Mr. Zineddine KOUAHLA MC-A Univ. of 8 May 1945, Guelma Supervisor

Mr. Brahim FAROU MC-A Univ. of 8 May 1945, Guelma Co-supervisor

Mr. Ismail MAZOUZI Prof. Univ. of 20 August 1955, Skikda Examiner

Mr. Mohamed NEMISSI Prof. Univ. of 8 May 1945, Guelma Examiner

Mr. Hamid SERIDI Prof. Univ. of 8 May 1945, Guelma Invited

2022/2023

 ملخص

وأجهزة ولدة من طرف مستشعراتمال ،لغير متجانسةمؤخرا الكمية الكبيرة للبيانات المستمرة و

عظم عملية صعبة جدا. م الاستعلام والبحث عن جعلت من حفظ هده البيانات ،(IoT) أنترنت الأشياء

 IoT . معالجة متطلبات فشلت في الأدبيات فيالموجودة الطرق

في الاستعلامللبحث عن التوازي استعملت معممزوجة kNNالبحث طريقة ،ه الأطروحةذه في

ئية ثنا الأول شجرة سحاب. الاقتراح-بنيات مقترحة، مطورة في الفضاء المتري في هندسة ضباب

فهرس بني وهو (B3CFشجرة) سحاب-مبنية على حاويات في مستوى حساب تجمعات الضباب

 الاستعلامات والبحث عن. نتائج محاكاة بناء الشجرة والتوازي DBSCAN لمزج التجميع بخوارزمية

تعدت الفهارس الأخرى في الأدبيات وهدا ما جعل منها B3CFبين أن شجرة يالتوازب kNNبطريقة

التي طورت (CVمعامل التغير) الثاني هو طريقة الاقتراحالكبير. IoTبديل قوي لفهرست بيانات

، في هذه الطريقة التدفق الأول للبيانات جمع في مجموعات من أجل فهرست البيانات المستمرة

البيانات في هذه المجموعات فهرست مباشرة بالتوازي. DBSCANمتجانسة باستعمال خوارزمية

بنى دة أو تعات إما تدخل في فهارس موجوبعد تجميع بيانات التدفق الآتي، البيانات في هده المجمو

الطريقة أثبت فعاليتها من حيث بناء الفهارس ذه. ه(CVمعامل التغير)جديدة حسب قيمة بها فهارس

بالتوازي، وهذا بعد مقارنتها مع طريقتين تمثلان الحالتين kNNالاستعلامات بطريقة والبحث عن

الثالث الاقتراح(. IEIفي فهرس موجود) إدخالوطريقة (CNIالجديدتين وهما إنشاء فهرس جديد)ِ

، المجموعات TD. لكن، في هذه الطريقة CVوالتي تشبه طريقة (TD) عتبةالمسافة الطريقة هو

على مقارنة المسافة بين مراكزها ومركز بالاعتمادالآتية تفهرس أو تدخل في فهارس موجودة

(من CNTشجرة جديد)ِ تعدت طريقة إنشاءهذه الطريقة .TDالمجموعات الأولى مع مسافة حدية

بالتوازي، لكن هي غير فعالة بعض kNNالبحث عن الاستعلامات بطريقة وحيث بناء الأشجار

النتائج التجريبية بينت أن هاتان الطريقتان تعدتا بعض طرق . CV الشيء بمقارنتها مع طريقة

 الأخير الاقتراح تمرة.المس IoTالفهرسة في الأدبيات ويمكن اعتبارهما طرق بديلة لفهرست بيانات

(التي QCCF)شجرة سحاب-على حاويات في مستوى الحساب ضباب شجرة رباعية مبنية

مقارنة التجارب الخاصة DBSCANتفهرس مباشرة دون تجميعها باستعمال خوارزمية بيانات الفيها،

في عقد هذه الشجرة مع بض الفهارس بالتوازي kNNالاستعلام بطريقة والبحث عنببناء الشجرة

هي أكثر فعالية من هاته الفهارس وهذا يجعل منها مرشحة لتكون QCCFفي الأدبيات يبين أن شجرة

 .B3CFأمام شجرة ولو أنها أظهرت بعض الضعف IoTطريقة بديلة لفهرست بيانات

 الكلمات المفتاحية

 التجميع؛ ؛B3CFشجرة المتشابه؛البحث عن الاستعلام المتري؛الفضاء الكبيرة؛ IoTبيانات

DBSCAN; شجرة ؛العتبةطريقة المسافة التغير؛طريقة معامل التوازي؛QCCF

Abstract

In recent years, the large amount of continuous and heterogeneous data

generated by the Internet of Things (IoT) sensors and devices made

their record and the query search tasks much more difficult. Most of the

state-of-the-art methods have failed to deal with the new IoT require-

ments. In this thesis, the kNN search method combined parallelism

was used for similarity queries search in proposed methods developed

in metric space in the Fog-Cloud architecture. The first proposition is

the Binary tree based on Containers at the Cloud-Clusters Fog com-

puting level (B3CF-tree) which is an index constructed by combining

DBSCAN clustering and parallelism. The simulation results of the in-

dex construction and the parallel kNN query search showed that the

B3CF-tree surpassed those in literature. The second proposition is

the Coefficient of Variation (CV) method which was developed for in-

dexing continuous IoT data stream. In this method, the first data

stream is grouped into clusters using the DBSCAN algorithm. Data

in these clusters are directly indexed in parallel. After the clustering

of the arrival data stream, the data in clusters are inserted in exist-

ing indexes or new indexes are constructed basing on the coefficient

of variation value. This method has proven its efficiency in term of

the indexes construction and the parallel kNN query search compared

with two other methods representing the two utmost cases namely the

Creation of a New Index (CNI) and the Insertion in an Existing In-

dex (IEI) methods. The third proposition is the Threshold Distance

(TD) method which looked like the CV method. However, in the TD

method, the arrival clusters are indexed or inserted in existing indexes

basing on the comparison of the distance between their centers and

the first clusters centers with a threshold distance TD. This method

outperforms the Creation of a New Tree (CNT) method in terms of

trees construction and parallel kNN search however, it is quite insuffi-

cient compared with the results of the CV method. The experimental

results showed that Both methods surpassed some indexing methods

in literature and could be considered as an alternative method for in-

dexing continuous IoT big data. The last proposition is the Quad tree

based on Containers at the Cloud- Fog computing level (QCCF-tree)

in which data are directly indexed without clustering. The comparison

of the experimental results of the index construction and the parallel

kNN search in the index nodes with some indexes in literature showed

that the QCCF-tree is more efficient than these indexes. This made it

a candidate as an alternative method for big IoT data indexing even

though it presented a weakness in front of the B3CF-tree.

Keywords
Big IoT data; Metric space; Similarity queries search; B3CF-tree; Clus-

tering; DBSCAN; Parallelism; Coefficient of Variation method; Thresh-

old Distance method; QCCF-tree

Résumé

Récemment, la grande quantité de données continues et hétérogènes,

générées par les capteurs et les composants IoT, a rendu l’enregistrement

des données et la recherche des requêtes des taches très difficiles. La

plus part des méthodes de l’état de l’art ont échoué de traiter les exi-

gences de l’IoT. Dans cette thèse, la méthode de recherche kNN com-

binée avec le parallélisme a été utilisée pour la recherche des requêtes

similaires dans des structures proposées développées dans l’espace mé-

trique dans l’architecture Fog-Cloud. La première proposition est le

Binary tree based on Containers at the Cloud-Clusters Fog computing

level (arbre-B3CF) qui est un indexe construit par la combinaison du

regroupement par l’algorithme DBSCAN et le parallélisme. Les résul-

tats de simulation de la construction de l’arbre et de la recherche des

requêtes par la méthode kNN parallèle ont montré que l’arbre-B3CF

a dépassé les autres dans la littérature qui fait de lui un alternatif

fort pour l’indexation des grandes données IoT. La seconde proposition

est la méthode de Coefficient of Variation (CV) qui a été développée

pour indexer les données continues. Dans cette méthode, le premier

flux de données est groupé dans des clusters en utilisant l’algorithme

DBSCAN. Les données dans ces clusters ont été directement indexées

parallèlement. Après le regroupement des données du flux arrivant,

les données dans ces clusters sont insérées dans des indexes existants

ou de nouveaux indexes seront construits selon la valeur du coefficient

de variation. Cette méthode a prouvé son efficacité, en terme de la

construction des indexes et la recherche des requêtes par la méthode

kNN parallèle, en la comparant avec deux méthodes représentants les

deux cas extrêmes notamment la méthode Creation of a New Index

(CNI) et la méthode Insertion in an Existing Index (IEI). La troisième

proposition est la méthode Threshold Distance (TD) qui ressemble à

la méthode CV. Cependant, dans la méthode TD, les clusters arrivants

sont indexés ou insérés dans des indexes existants en se basant sur la

comparaison de la distance entre leurs centres et ceux des premiers clus-

ters avec une distance seuil TD. Cette méthode a surpassé la méthode

Creation of a New Tree (CNT) en termes de la construction des arbres

et la recherche kNN parallèle cependant, elle est un peu inefficace en la

comparant avec la méthode CV. Les résultats expérimentaux ont mon-

trés que ces deux méthodes surpassées quelques méthodes d’indexation

dans la littérature et peuvent être considérées comme des méthodes al-

ternatives pour l’indexation des données IoT continues. La dernière

proposition est le Quad tree based on Containers at the Cloud- Fog

computing level (arbre-QCCF) dans laquelle, les données sont direc-

tement indexées sans le regroupement par l’algorithme DBSCAN. La

comparaison des résultats expérimentaux de la construction de l’arbre

et de la recherche kNN parallèle dans les nœuds de l’arbre avec quelques

indexes dans la littérature a montré que l’arbre-QCCF est plus efficace

que ces indexes. Cela fait de lui un candidat comme une méthode

alternative pour l’indexation des données IoT même s’il présente une

faiblesse face à l’arbre-B3CF.

Mots clés
Données massives d’IdO; Espace métrique; Recherche de requêtes de

similarité; Arbre-B3CF; Clustering; DBSCAN; Parallelisation; Méthod

du Coefficient de Variation; Méthode de la Distance Seuil; Arbre-

QCCF

Contents

List of Abbreviations xxii

Introduction 1

Motivations . 1

Context of the Study . 2

Objectives and Contributions . 3

Overview of the Thesis . 6

I IoT data Indexing in Metric Space: Definitions and
Related Work 8

1 Metric Spaces 9

1.1 Introduction . 9

1.2 Metric Space Definition . 10

1.3 Multidimensional Space Definition 10

1.4 Distance Functions . 11

1.4.1 Minkowski distances . 11

1.5 Concepts of Ball and Hyperplane 13

1.5.1 Ball partitioning . 13

vii

CONTENTS

1.5.2 Hyperplane partitioning . 14

1.6 Similarity Query Search . 15

1.6.1 Range query method . 16

1.6.2 Similarity join method . 16

1.6.3 Reverse nearest neighbor query method 17

1.6.4 Nearest Neighbor query method 18

1.7 Conclusion . 19

2 Internet of Things (IoT) 20

2.1 Introduction . 20

2.2 Ubiquitous Computing in the Future Decade 20

2.3 IoT Definition . 21

2.4 IoT Functional Blocks . 23

2.5 IoT Architecture . 24

2.6 IoT Applications . 27

2.6.1 Personal and Home . 27

2.6.2 Enterprise . 28

2.6.3 Public Service . 28

2.6.4 Mobile . 29

2.7 IoT Challenges . 29

2.7.1 Secure and privacy . 29

2.7.2 Availability . 30

2.7.3 Reliability . 30

2.7.4 Mobility . 30

2.7.5 Performance . 31

2.7.6 Management . 31

2.7.7 Scalability . 31

2.7.8 Interoperability . 31

viii

CONTENTS

2.7.9 Huge heterogeneous data . 32

2.8 Cloud Computing . 32

2.8.1 Cloud computing definition 32

2.8.2 Cloud computing architecture 37

2.8.3 Cloud computing challenges 38

2.9 Fog Computing . 41

2.9.1 Fog computing definition . 41

2.9.2 Fog node . 44

2.9.3 Fog architecture . 46

2.9.4 Fog computing challenges 47

2.10 Conclusion . 50

3 Clustering Methods of Big IoT Data 52

3.1 Introduction . 52

3.2 Big Data Definition . 53

3.3 Big IoT Data Definition . 56

3.4 Clustering Methods . 56

3.4.1 Partitioning clustering algorithm 57

3.4.2 Hierarchical clustering . 58

3.4.3 Grid-based algorithms . 59

3.4.4 Model-based algorithms . 61

3.4.5 Density-based algorithms . 62

3.5 Comparison Between Clustering Techniques 65

3.6 Other Big IoT Data Analytics Methods 69

3.6.1 Prediction method . 70

3.6.2 Association rule method . 70

3.6.3 Classification method . 71

3.7 Conclusion . 72

ix

CONTENTS

4 Big IoT Data Indexing 73

4.1 Introduction . 73

4.2 Multidimensional Space Indexing Methods 73

4.2.1 Hashing methods . 75

4.2.1.1 Locality Sensitive Hashing methods (LSH) 75

4.2.1.1.a Centralized methods 75

4.2.1.1.b Distributed methods 76

4.2.1.2 Learning to Hash methods (L2H) 77

4.2.1.2.a Centralized methods 78

4.2.1.2.b Distributed methods 78

4.2.2 Tree methods . 79

4.2.2.1 Centralized methods 79

4.2.2.1.a Space partitioning methods 79

4.2.2.1.b Data partitioning methods 81

4.2.2.2 Distributed methods 84

4.3 Metric Space Indexing Methods . 94

4.3.1 Centralized metric space indexing methods 94

4.3.1.1 Space partitioning 95

4.3.1.2 Data partitioning 109

4.3.2 Distributed metric space indexing methods 115

4.4 Comparative Analysis of Indexing Methods 120

4.4.1 Multidimensional space indexing methods 120

4.4.1.1 Hashing methods 120

4.4.1.2 Tree methods . 122

4.4.2 Metric space indexing methods 126

4.5 Conclusion . 128

x

CONTENTS

II Propositions 129

5 Parallel Construction of B3CF-trees 130

5.1 Introduction . 130

5.2 Proposed Approach . 132

5.2.1 Clustering fog level . 133

5.2.2 Indexing fog level . 136

5.2.2.1 B3CF-tree build 138

5.2.2.2 Parallel kNN seach in B3CF-tree 140

5.3 Simulation and Results . 142

5.3.1 Evaluation and comparison of the index construction 144

5.3.1.1 Number of calculated distances 144

5.3.1.2 Number of comparisons 145

5.3.1.3 Construction time 146

5.3.2 Evaluation and comparison of the constructed index quality 148

5.3.2.1 Number of nodes per level 148

5.3.2.2 Data distribution in leaves 148

5.3.2.3 Number of internal nodes 149

5.3.2.4 Number of leaf nodes 149

5.3.2.5 Tree height . 150

5.3.3 Evaluation and comparison of the kNN search 152

5.3.3.1 Number of calculated distances 152

5.3.3.2 Number of calculated comparisons 153

5.3.3.3 Time of search . 154

5.3.3.4 Number of the visited leave 159

5.4 Conclusion . 160

6 CV Method for Indexing Continuous IoT Data 162

xi

CONTENTS

6.1 Introduction . 162

6.2 Proposed Approach . 163

6.2.1 Clustering method . 165

6.2.1.1 CV method . 166

6.2.1.2 Indexing method 168

6.2.1.2.a Parallel kNN similarity queries search 169

6.2.1.2.b CNI method 170

6.2.1.2.c IEI method 172

6.3 Simulation and Results . 173

6.3.1 Experimental setting . 173

6.3.2 Evolution of the number of indexes with the data stream . . 175

6.3.3 Evaluation of indexes construction 175

6.3.3.1 Number of calculated distances 176

6.3.3.2 Number of calculated comparisons 176

6.3.3.3 Time of indexing 176

6.3.3.4 Energy consumption during the indexing 177

6.3.4 Quality of the constructed BH-trees 180

6.3.4.1 Average height of BH-trees 181

6.3.4.2 Average number of internal nodes 181

6.3.4.3 Number of nodes per level 182

6.3.4.4 Data distribution in BH-tree leaves 183

6.3.5 Evaluation of the parallel kNN search in BH-trees 184

6.3.5.1 Number of calculated distances 185

6.3.5.2 Number of calculated comparisons 186

6.3.5.3 Time of search . 187

6.3.5.4 Energy consumption during the kNN search 190

6.4 Conclusion . 191

xii

CONTENTS

7 TD Method for Indexing Continuous IoT Data 193

7.1 Introduction . 193

7.2 Proposed Approach . 194

7.3 Simulation and Results . 197

7.3.1 Evolution of the number of GHT 198

7.3.2 Evaluation of GHT construction 199

7.3.2.1 Computed distances 199

7.3.2.2 Computed comparisons 200

7.3.2.3 Computing time 200

7.3.3 Evaluation of parallel kNN search 202

7.3.3.1 Distances in parallel kNN search 202

7.3.3.2 Comparisons in parallel kNN search 203

7.3.3.3 Time of kNN search 203

7.3.3.4 Comparison of the time of kNN search between CV

and TD method 205

7.4 Conclusion . 206

8 Parallel kNN Search in QCCF-tree Nodes 207

8.1 Introduction . 207

8.2 Proposed Approach . 208

8.2.1 QCCF-tree build . 210

8.2.2 Parallel kNN search in QCCF-nodes 211

8.3 Simulation and Results . 212

8.3.1 Evaluation of the QCCF-tree construction 213

8.3.1.1 Number of calculated distances 214

8.3.1.2 Number of comparisons 215

8.3.1.3 Construction time 215

8.3.2 Evaluation of the in-node parallel kNN search 216

xiii

CONTENTS

8.3.2.1 Number of calculated distances 216

8.3.2.2 Number of calculated comparisons 217

8.3.2.3 Time of search . 218

8.3.3 Comparison between B3CF-tree and QCCF-tree 219

8.4 Conclusion . 221

Conclusions 223

References 264

List of Publications 265

xiv

List of Figures

1.1 Different Lp distance functions . 12

1.2 Ball partitioning scheme . 14

1.3 Hyperplane partitioning scheme . 15

1.4 Range query description. 16

1.5 Similarity self join query with µ = 2.5 17

1.6 Reverse nearest neighbor query with k=2 18

1.7 kNN query search with k=5. 19

2.1 IoT architecture with three layers 25

2.2 IoT architecture with five layers. 26

2.3 IoT applications domain . 27

2.4 Scheme of NIST Cloud computing definition. 33

2.5 Cloud computing service models . 34

2.6 Cloud computing architecture . 37

2.7 Architecture of fog computing. 48

3.1 Brief description of the 10 Vs of big data. 55

3.2 DBSCAN algorithm based on ϵ and MinPts 63

3.3 Big data analytics methods . 70

4.1 Global taxonomy of IoT data indexing methods. 74

xv

LIST OF FIGURES

4.2 Hashing methods in multidimensional space. 74

4.3 Centralized tree methods in multidimensional space. 80

4.4 Distributed tree methods in multidimensional space. 84

4.5 Centralized metric space indexing methods. 95

4.6 (a) Insertion of new objetcs in the V-tree. (b) Corresponding space

partitioning in Voronoi diagram . 96

4.7 (a) Hyperplane space partitioning (b) Structure of the GH-tree. . . 97

4.8 Example of partitioning used in GNAT-tree in (a) and the corre-

sponding tree in (b) . 98

4.9 Voronoi cells for pivots p1,p2,p3: (a) 1-level tessellation, (b) pivot

permutations . 99

4.10 Description of the VP-tree. 101

4.11 Example of a MM-tree indexing of 8 objects 102

4.12 Example of two expansion procedures applied to a node N 103

4.13 Description of the IM-tree . 104

4.14 Description of the XM-tree . 105

4.15 Six regions that can be combined to create NOBH-tree members . . 106

4.16 Example of the D-index . 107

4.17 Principles of the iDistance . 107

4.18 Dynamic cluster tree with 3 levels 108

4.19 Construction framework of an SPB-tree 109

4.20 Descriptive scheme of the M-tree 110

4.21 Description of the DBM-tree . 112

4.22 Structure of the MX-tree . 112

4.23 Distributed metric space indexing methods. 115

4.24 Parallel version of GHB-tree . 117

4.25 Structure of AMDS architecture . 118

xvi

LIST OF FIGURES

4.26 Partitioning of space with BCCF-tree 120

5.1 Cloud-fog computing architecture. 133

5.2 B3CF-tree construction in the cloud-fog computing level. 135

5.3 Partitioning the space in the B3CF-tree. 138

5.4 Number of distances, number of comparisons and construction time

of B3CF-tree, BCCF-tree, BB-tree, MX-tree and IWC-tree. 145

5.5 Number of nodes per level in the B3CF-tree. 149

5.6 Distribution of data in the B3CF-tree. 150

5.7 Number of internal nodes, number of nodes leaves and height of

B3CF-tree, BCCF-tree, BB-tree, MX-tree and IWC-tree. 151

5.8 Number of calculated distances for the kNN search in B3CF-tree,

BCCF-tree, BB-tree, MX-tree and IWC-tree. 152

5.9 Number of comparisons calculated for the kNN search in B3CF-tree,

BCCF-tree, BB-tree, MX-tree and IWC-tree. 153

5.10 Time of kNN search in B3CF-tree, BCCF-tree, BB-tree, MX-tree

and IWC-tree. 154

5.11 Number of the visited leaves in B3CF-tree, BCCF-tree, BB-tree and

MX-tree. 159

6.1 Architecture of the CV method for indexing continuous IoT data. . 165

6.2 CV method in the cluster processing level. 168

6.3 Number of BH-trees versus data stream. 174

6.4 Number of distances calculated during the indexing of each data

stream. 177

6.5 Number of comparisons calculated during the indexing of each data

stream. 178

xvii

LIST OF FIGURES

6.6 Time of data stream indexing using the CV method compared with

both the IEI and the CNI methods. 179

6.7 Average energy consumption during indexes construction using CV,

CNI and IEI methods. 180

6.8 Average height, average number of internal nodes and average num-

ber of leaves nodes of BH-trees constructed using the CV method,

the CNI method and the IEI method. 181

6.9 Variation of the number of nodes per level of BH-trees constructed

using the CNI, IEI and CV methods. 183

6.10 Data distribution in leaves. 184

6.11 Number of distances calculated for the kNN search in BH-trees by

CNI, IEI and CV methods. 186

6.12 Number of comparisons calculated for the kNN search in BH-trees

by CNI, IEI and CV methods. 187

6.13 kNN search time of CNI, IEI and CV method. 188

6.14 Number of the visited leaves in CNI, IEI and CV method. 189

6.15 Energy consumption during the 100NN search for CNI, IEI and CV

method. 191

7.1 Architecture of TD method. 194

7.2 Evolution of the number of GHT as a function of the data flow. . . 199

7.3 Computed distances the TD method and the CNT method as a

function of the data flow. 200

7.4 Computed comparisons for the TD method and the CNT method

as a function of the data flow. 201

7.5 Computing time for CNT method and TD method for each data flow.201

7.6 Mean height (a) and global number of GHT (b), for both used

datasets, using the TD and the CNT methods. 202

xviii

LIST OF FIGURES

7.7 Computed distances during kNN search in indexes constructed using

the TD method and CNT method. 203

7.8 Computed comparisons during kNN search in indexes constructed

using the TD method and CNT method. 204

7.9 Time of kNN search in GHT constructed using the TD method and

the CNT method. 205

7.10 Time of search in CV and TD method. 205

8.1 Cloud-fog computing architecture. 208

8.2 Partitioning of space in QCCF-tree. 209

8.3 Number of distances of QCCF-tree, BCCF-tree, BB-tree, MX-tree

and IWC-tree. 214

8.4 Number of comparisons calculated of QCCF-tree, BCCF-tree, BB-

tree, MX-tree and IWC-tree. 215

8.5 Construction time of QCCF-tree, BCCF-tree, BB-tree, MX-tree and

IWC-tree. 216

8.6 Number of distances calculated for the kNN search in QCCF-tree,

BCCF-tree, BB-tree, MX-tree and IWC-tree. 217

8.7 Number of comparisons calculated for the kNN search in QCCF-

tree, BCCF-tree,BB-tree, MX-tree and IWC-tree. 218

8.8 Time of kNN search in QCCF-tree, BCCF-tree, BB-tree, MX-tree

and IWC-tree. 219

8.9 Time of kNN search in QCCF-tree and B3CF-tree. 220

8.10 Construction time in QCCF-tree and B3CF-tree. 221

xix

List of Tables

3.1 Comparison of various clustering algorithms 67

4.1 Summary of locality sensitive hashing methods in multidimensional

space. 121

4.2 Summary of learning to hash methods in multidimensional space. . 122

4.3 Summary of centralized tree indexing methods in multidimensional

space . 124

4.4 Summary of distributed tree indexing methods in multidimensional

space. 125

4.5 Summary of centralized tree indexing methods in metric space. . . . 127

4.6 Summary of distributed tree based indexing methods in metric space.128

5.1 Definitions of variables used in algorithms. 134

5.2 Characteristics of the selected datasets for the index evaluation. . . 142

5.3 Parameter values of the DBSCAN algorithm. 143

5.4 Values of the number of calculated distances, the number of com-

parisons and the construction time. 147

5.5 Values of the number of internal nodes, the number of the nodes

leaves and the height of the tree. 151

xx

LIST OF TABLES

5.6 Number of distances calculated for the kNN search in B3CF-tree,

BCCF-tree, BB-tree, MX-tree and IWC-tree. 156

5.7 Number of comparisons calculated for the kNN search in B3CF-tree,

BCCF-tree, BB-tree, MX-tree and IWC-tree. 157

5.8 Time of the kNN search in B3CF-tree, BCCF-tree, BB-tree, MX-

tree and IWC-tree . 158

5.9 Average number of the visited leaves in B3CF-tree, BCCF-tree, BB-

tree and MX-tree. 160

6.1 Table of notations. 167

6.2 Characteristics of the selected datasets for the index evaluation. . . 174

7.1 Characteristics of the used data flows. 198

xxi

List of Abbreviations

B3CF Binary tree based on containers at the cloud-clusters fog computing level.

131

BCCF Binary tree based on containers at the cloud-fog computing level. 119

BH Binary tree with Hyper-plane. 168

CNI Creation of a New Index. 170

CV Coefficient of Variation. 164

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 62

GH Generalised Hyper-plane tree. 97

IEI Insertion in an Existing Index. 170

IoT Internet of Things. 21

kNN k Nearest Neighbor. 71

L2H Learning to Hash methods. 74

LSH locality sensitive hashing methods. 73

xxii

List of Abbreviations

MBR Minimum Bounding Rectangles. 81

NIST National Institute of Standards and Technology. 32

QCCF Quad-tree based on Containers at the Cloud-Fog computing level. 208

RFID Radio Frequency IDentification. 22

TD Threshold Distance. 193

WSN Wireless Sensor Network. 29

xxiii

Introduction

Motivations

In the last decades, the Internet of Things (IoT) has found a wide range of use such

as in smart cities, in smart home and in health care. This technology supports

a large number of physical objects and devices with identities, personalities and

network capabilities (Things) to transparently communicate and interact between

them and with other network resources (Internet). These IoT devices provide

services to facilitate life. They are heterogeneous and in many cases, they are

deployed in distributed and dynamic environments over a large geographic region.

They generate huge data that can overwhelm storage systems and causes a serious

increase in their recovery time. A new forecast from International Data Corpo-

ration (IDC) estimates that there will be 41.6 billion connected IoT devices, or

“things,” generating 79.4 Zetta bytes (ZB) of data in 2025 [1]. The problem of data

latency is considered as a serious obstacle when using cloud computing for storage

and process of this big IoT data. The causes of this data delay are still obvious [2].

Several researches have been made to address big IoT data storage and various

papers have been published [3], [4] to improve cloud computing of data storage

and queries retrieve algorithms. Recently, a few researches have addressed the

data storage and retrieve using the fog computing [5], [6] because of its interesting

1

Introduction

characteristics such as the closeness to the end users and the computation capabil-

ities. In addition, in the fog computing, big IoT data could be distributed in many

fogs located in different geographic regions. Benefiting from the fog characteristics

in indexing big IoT data will improve considerably the similarity queries search.

Indeed, indexing of large-scale IoT data must be efficient, dynamic and support

different data types.

Context of the Study

The massive data, generated by interconnected IoT devices require storage, pro-

cess, analysis and finding effective methods for similarity queries search. To store

these big IoT data, indexing methods are used. Indexing is one of the most widely

used mechanisms to provide rapid access to data. Indexing is a data organiza-

tion step that must allow efficient access to the data efficiently when performing

similarity queries. The principle is to organize similar data to speed up searches

[7]. The goal of any index is therefore to provide fast access to the objects in a

database, by reducing the search space, the cost of input/output and the number

of calculations of distances between objects. In other words, the index provides the

efficient implementation of associative search [8]. For a better management of big

IoT data, the fog computing architectures are currently used. The hierarchical fog

architecture consists of three layers: terminal layer, fog layer and cloud layer [9].

Indexing of large-scale IoT data must be efficient, dynamic and support different

data types. Metric spaces became popular in the indexing process. In order to

exploit not the data representation itself, which has become too rich and complex,

but to work "only" on the similarities that can be computed between objects.

Furthermore, the nature of big IoT data is dynamic and its underlying data dis-

tribution can change over time. Another point is that the data is produced in real

2

Introduction

time. This necessitates development of IoT specific data analytics solutions which

can handle the heterogeneity, dynamicity and velocity of the data. To group the

data coming from the devices, clustering methods are used in which, the data is

usually clustered according to different criteria; e.g. similarity and homogeneity.

The clustering results in a data analysis scenario can be interpreted as categories

in a dataset and can be used to assign data to various groups i.e. clusters [10].

The grouping of IoT data into clusters may allow the introduction of parallelism

during both the indexes construction and similarity queries search.

Objectives and Contributions

IoT systems are comprised of various devices that generate heterogeneous IoT

data continuously. This continuity involved a big challenge concerning the data

indexing and the query search in the dynamic IoT environment. The traditional

indexing methods became inadequate to index the big IoT data because they suf-

fer from the issue of the degradation in large scale and they are unable to extend

with the permanent collection of data. In addition, the direct use of the cloud

infrastructure affected negatively the communication time due to the big physical

distances between the data sources and the data warehouse. The aim of this thesis

is to propose new systems for indexing and retrieving data in an IoT environment

that allows dealing with the index degradation and network congestion while en-

suring minimal search time with optimal results quality. To reach our objective,

the following tasks were addressed:

Proposition of a novel taxonomy This taxonomy is based on the grouping of

indexes of different types of data into centralized methods and distributed methods.

3

Introduction

Relocalization of the indexing process from the cloud to the fog nodes

In order to bring the data as close as possible to the indexing structure in order to

considerably reduce network congestion. In addition, each fog node generates the

indexing structure of the distributed IoT data which not only allows parallelism

during the construction of trees, but also allows it during the queries search process

through the simultaneous launch of the same query on all fog nodes.

Division of the fog layer into levels In the cloud-fog architecture, the fog

layer is divided into several levels in order to make a multi-steps indexing process.

Use of metric space The indexes constructed in multidimensional space suffer

from the depending on a specific data type and dimensions. The data processing,

in the metric space, is easier to index because it depends only on the distance

between objects whatever their types.

Data clustering as a first step indexing process The DBSCAN algorithm

is used, in the first fog level, to group IoT data into homogeneous clusters in order

to reduce the data overlapping and index degradation.

Parallel construction of trees This process takes place in the second fog level.

In this level, B3CF-trees (Binary tree based on containers at the cloud-clusters fog

computing level) of clusters resulting from the use of the DBSCAN algorithm in

the clustering fog level, were constructed simultaneously.

Use of hyper-planes for space partitioning For indexing IoT data in clus-

ters, B3CF-trees are based on the metric space partitioning into hyper-planes using

two pivots in order to guarantee a no-overlapping in indexes.

4

Introduction

Indexing continuous data stream using the Coefficient of Variation (CV)

method In order to index continuous IoT data stream in BH-trees (Binary trees

with Hyper-plane), the Coefficient of Variation (CV) method is used in the cluster

processing fog level located between the clustering level and the indexing level.

Indexing continuous data stream using the Threshold Distance (TD)

method In the Threshold Distance (TD) method, proposed for indexing contin-

uous IoT data stream in GHTs (Generalised Hyper-plane Trees), the fog layer is

divided only into a clustering level and an indexing level.

Use of balls for space partitioning A proposed index called QCCF-tree

(Quad-tree based on Containers at the Cloud-Fog computing level) is constructed,

in the fog node, basing on the metric space partitioning into four balls using four

pivots in order to reduce the index degradation and to speed up the query search.

In this approach, the fog layer is not divided.

Use of parallel kNN search in the proposed binary trees The use of the

DBSCAN algorithm for data clustering allows not only the parallel construction

but also the parallel query search. The kNN search method is combined with

parallelism in order to improve the similarity queries search process.

Use of parallel kNN search in the QCCF-tree nodes The parallelism is

combined with the kNN search method in the inner of the QCCF-tree i.e. in the

QCCF-tree nodes, in order to speed up the similarity queries search.

5

Introduction

Overview of the Thesis

This thesis will be presented in two parts in addition to the introduction and the

conclusion sections. The first part, untitled IoT data indexing in metric spaces:

definitions and related work, contains four chapters. The first chapter deals with

the mathematical definitions of some concepts and the different methods of simi-

larity query search in metric space. In the second chapter, the internet of things

definition will be presented as well as the characteristics and the different chal-

lenges in addition to an overview in the cloud computing and the fog computing.

In the third chapter, big IoT data is defined and the clustering methods are de-

scribed in detail in addition to other data analytics methods. The fourth chapter

regrouped a state of the art concerning the centralized and the distributed in-

dexing methods in multi-dimensional and in metric spaces by focusing on their

advantages and limitations. The proposed approaches, in metric space, in the

cloud-fog architecture are gathered in the second part which contains four chap-

ters. The first chapter presents the parallel kNN search in the proposed B3Cf-trees

constructed using the DBSCAN clustering combined with parallel indexation. In

the second chapter, the parallel kNN search is used for similarity search in BH-tree

constructed for indexing continuous data stream using the Coefficient of Variation

(CV) method. The third chapter presents the parallel kNN search of queries in

GH-trees constructed for indexing continuous IoT data stream using the Threshold

Distance (TD) method. The last chapter presents the parallel kNN query search

in the QCCF-tree nodes constructed by the indexing of the whole IoT data in a

quad tree. For each proposition, a detailed description, algorithms, a description

of the computation platform, the used datasets, the computation parameters are

provided. The experimental results in terms of index construction and the kNN

query search process will be presented, discussed and compared with those in lit-

erature for each proposition. A comparison between the proposed approaches will

6

Introduction

be also provided.

7

Part I

IoT data Indexing in Metric Space:

Definitions and Related Work

8

1 Metric Spaces

1.1 Introduction

The widespread use of smart objects connected to Internet such as sensors, ac-

tuators and embedded devices, has led to an increase in the amount of collected

data [11]. The type of these data is heterogeneous, dynamic and its corresponding

data distribution can change over time [10]. On the other hand, the data comes in

large quantities and is produced in real-time. This data needs to be processed and

stored in a manner allowing its retrieve quickly. Many approaches, developed in

the the multidimensional space, have presented some disadvantages when storing

this heterogeneous data in terms of size, type and dimension [12], [13], [14]. In this

work, the metric space is proposed to be the right compromise since, in this space,

only distances between data are used regardless of their types and dimensions [15].

Metric space has been proposed before as a universal abstraction for data [16].

Furthermore, multidimensional spaces is a special cases of metric spaces. In the

vector space, objects are represented by vectors and geometric properties of some

of these vectors can be used for research. These characteristics, of course, cannot

be extended to metric distances [17].

In this chapter, we present the mathematical definition of metric space and the

ball and the hyperplane data partitioning concepts in metric space. Lastly, we

9

CHAPTER. 1 Metric Spaces

provide definitions of some similarity query search methods in metric space.

1.2 Metric Space Definition

A metric space is a set of objects where a notion of distance between objects is

defined. The mathematical definition is given as follows:

Definition 1.2.1 (Metric space). A metric space M = (O, d) is defined by a dis-

tance function d and a dataset O. The distance function d measures the similarity

between two elements from the given dataset O. Similar objects correspond to

smaller distances. Being a metric space (O, d) where O a set of points and d a dis-

tance function defined as: d : O× O→ R+. The distance function d characterized

by:

1.Non− negativity : ∀(x, y) ∈ O2, d(x , y) ⩾ 0 . (1.1)

2.Reflexivity : ∀x ∈ O, d(x , x) = 0 . (1.2)

3.Symmetry : ∀(x, y) ∈ O2, d(x , y) = d(y , x). (1.3)

4.T riangle− inequality : ∀(x, y, z) ∈ O3, d(x , y) + d(y , z) ⩽ d(x , z). (1.4)

1.3 Multidimensional Space Definition

A multidimensional space is defined as a set of objects, called vectors, homogeneous

or heterogeneous.The most usual case is that of orthonormal subspaces, i.e. defined

on R+. In a vector space, objects are represented by vectors and the geometrical

properties of these vectors are exploited for research. However, these properties

cannot be extended to metric spaces [17]. Multidimensional spaces are subsets of

the metric space, so any norm on a multidimensional space is a subset of a metric

10

CHAPTER. 1 Metric Spaces

space [18].

1.4 Distance Functions

Distance functions are tools for measuring the proximity between different objects

and are suitable for specific applications. These metrics are based on coordinates

and can be divided into two groups: discrete distance functions and continuous

distance functions. Discrete distance functions give only a small set of values,

whereas with continuous distance functions, the cardinality of the resulting set of

values is very large or infinite.

Furthermore, distance functions may be classified in terms of their cost of calcu-

lation, just by taking into account their approximate complexity.

1.4.1 Minkowski distances

The Minkowski distances are a family of metric functions, known as Lp metrics,

because the individual cases depend on the numerical parameter p which vary

according to the type of data. The function is defined on n-dimensional vectors of

real numbers which can be transformed into vectors of numbers. The mathematical

definition is given as follows:

Definition 1.4.1 (Minkowski distances). The Minkowski distances is defined by

two vectors X ∈ Rn = (x1, x2, · · · , xn) and Y ∈ Rn = (y1, y2, · · · , yn), with p is an

integer. we define the Minkowski distances where,

Lp[X, Y] = p

√√√√ n∑
i=1

|xi − yi|p (1.5)

In the Minkowski distances, the most used values of the parameter p are p = 1, p =

11

CHAPTER. 1 Metric Spaces

2 and p = ∞ (Figure 1.1). Each curb represents a set of points, in the plane, at

the same distance from the central point. A set of points, in the plane, at the same

distance from the central point. p = 1 is translated by a losange, the circle for the

metric p = 2 and p = ∞ results in a square. The intermediate values produce a

progressive bulge from the lozenge to the square via the circle [18].

1. For p = 1: usually the Manhattan distance, which is expressed in the follow-

ing equation:

L1[X, Y] =

√√√√ n∑
i=1

|xi − yi| (1.6)

2. For p = 2: distance indicates the Euclidean distance, the equation is:

L2[X, Y] = 2

√√√√ n∑
i=1

|xi − yi|2 (1.7)

3. For p = ∞: known as the Chebyshev distance, the maximum distance and

the infinite distance. Its equation is:

L∞[X, Y] =
n

max
i=1
|xi − yi| (1.8)

P=1 P=2 P=∞

Figure 1.1: Different Lp distance functions [15].

12

CHAPTER. 1 Metric Spaces

1.5 Concepts of Ball and Hyperplane

The partitioning, in large, represents the basic principles of all storage structures,

designed to partition the search space into subsets, such that once a query is

answered, only certain of these subsets will be searched. For partition in a metric

space, the data set does not possess coordinates that can be used in the geometric

divisions. To solve this issue the metric space is based on selecting an object

and promoting it to the pivot. All the other objects are classified by calculating

the distance from this pivot. The choice of a certain value of distance acts as a

threshold value and partitions the objects into two subsets. The researchers often

exploit two key concepts: the ball partition and the hyperplane partition.

1.5.1 Ball partitioning

A ball is a general concept that allows us to generalize the disc in the Euclidean

plane and the sphere in space. It is a set O of a metric space defined by a center

object, or "pivot p", and a radius r (Figure 1.2). The use of pivot p ∈ O and

radius r ∈ R+ allows the division of objects into two subsets S1 and S2 . The

formal definition the ball partitioning is given:

Definition 1.5.1 (Ball). Let M = (O, d) be a metric space. Let p ∈ O be a pivot

object and r ∈ R+ the covering radius. Then Ball(O, d, p, r) that is Ball(p, r),

where there is no ambiguity in the metric space defined a ball which partitions the

space into two subsets S1 and S2:

S1 = {o ∈ O, d(p, o) ⩽ r}

S2 = {o ∈ O, d(p, o) > r}
(1.9)

The redundant conditions ⩽ and > provide balance when the pivot is a median

13

CHAPTER. 1 Metric Spaces

S1

S2

P

r

Figure 1.2: Ball partitioning scheme [18].

value and is not unique. This is achieved by affecting each element at the median

distance to one of the subsets in an arbitrary, however balanced, method.

1.5.2 Hyperplane partitioning

This partitioning concept also splits the set O into subsets by two pivots p1 and

p2, which are chosen arbitrarily (Figure 1.3). The rest of the objects o is assigned

to S1 or S2 according to their distances to the selected pivots p1 and p2 as follows:

Definition 1.5.2 (Generalized hyperplane partitioning). Let M = (O, d) be a

metric space. Let (p1, p2) ∈ O2 be two pivots object with d(p1, p2) > 0. Then

H(O, d, p1, p2) that is H(p1, p2), where there is no ambiguity in the metric space

defined a hyperplane which partitions the space into two subsets S1 and S2:

S1 = {o ∈ O, d(p1, o) ⩽ d(p2, o)}

S2 = {o ∈ O, d(p1, o) > d(p2, o)}
(1.10)

The generalized hyperplane eliminate the overlapping between the data. Unlike

the ball partitioning, the generalized hyperplane is not able to assure a balanced

14

CHAPTER. 1 Metric Spaces

distribution and a well adapted selection of pivot to attain this result is an attrac-

tive problem.

S1

S2

P2

P1

Figure 1.3: Hyperplane partitioning scheme [18].

1.6 Similarity Query Search

The intense use of IoT devices induced the emergence of unstructured IoT data

that contains many types of data such as images, videos and time series. These

types of data cannot be organized in a classical way or searched in a very signifi-

cant way using accurate database queries which would retrieve exact results. The

more common approach to similarity search, enabling always the building of index

structures, to be exploited in different spaces. Similarity search is a manner of

information retrieval in that the query is an example of an object and the result

desired is a set of objects considered similar - in some sense - to the query [19]. A

similarity query is given as an explicit or an implicit definition of a query object q

and by using a constraint on the form and range of the neighborhood query. The

resulting response to a query finds any objects that satisfy the constraint, which

are guaranteed to be the objects that are near the given query object.

15

CHAPTER. 1 Metric Spaces

1.6.1 Range query method

A range query R(q, r) finds all objects o within a set X ⊆ O that have a distance,

from the query q, less than r (Figure 1.4).

R(q, r) = {o ∈ X, d(o, q) ⩽ r} (1.11)

In the range query the query object q do not necessarily have to exist in the set

(X ⊆ O) to be searched [18].

q

r

O1

O2

O3

O4

O5

O6

O7

O8

O9
O10

O11

O12

O13

O14

O15

O16
O17

O18

O19

Figure 1.4: Range query description.

1.6.2 Similarity join method

The similarity join is performed by two different sets X ⊆ O and Y ⊆ O. It was

created by the need to use unstructured data to provide structured services [15].

The similarity join of two dissimilar datasets (X ⊆ O) and (Y ⊆ O) retrieves

all object pairs (x, y) ∈ (X, Y) with distance not greater than a threshold value

16

CHAPTER. 1 Metric Spaces

µ ≥ 0. The similarity join method is formally defined by the following equation:

J(X, Y, µ) = {(x, y) ∈ (X, Y), d(x, y) ⩽ µ} (1.12)

The dataset X may be identical to the dataset Y , this case is called the self

similarity join (Figure 1.5). If µ = 0, we get the traditional natural join.

O1

O2

O3

O4

O5

O6

0 1 2 3

µ 𝒔𝒄𝒂𝒍𝒆

Figure 1.5: Similarity self join query with µ = 2.5 [15].

1.6.3 Reverse nearest neighbor query method

Inverting the nearest neighbor query, finds the objects in the set closest to the

query object q. The objects see the query object q as their nearest neighbor.

It’s referred to as a reverse nearest neighbor search [15]. The basic definition of

this query search method is to find every object related with q as a k nearest

neighbor (Figure 1.6). In this figure, dotted circles represent the distances to the

second closest neighbor of the objects Oi. The objects o4 and o5 satisfy the query

2RNN(q), i.e. objects with q among their two nearest neighbors are represented

17

CHAPTER. 1 Metric Spaces

by blue dots [15]. The response set of the general query kRNN(q) is given by the

following relation [15]:

kRNN(q) = {S ⊆ X, |S| = k,∀x ∈ S : q ∈ kNN(x) ∧ ∀x ∈ X − S : q /∈ kNN(x)}

(1.13)

q

O1

O2

O3

O5

O6

O4

Figure 1.6: Reverse nearest neighbor query with k=2 [15].

1.6.4 Nearest Neighbor query method

The basic definition of this query search method is to find the closest object to

the given query object q, i.e. the nearest neighbor of q [18]. The general case is

where we search the k nearest neighbors (kNN). Specifically, kNN query finds the

k nearest neighbors of the object q. Figure 1.7 illustrates the situation for k = 5

the objects O4, O10, O5, O19 and O18 are closest to the query q. Formally, the set

of the responses is defined as follows [15]:

kNN(q) = {S ⊆ X, |S| = k ∧ ∀x ∈ S, y ∈ X − S : d(q, x) ⩽ d(q, y)} (1.14)

18

CHAPTER. 1 Metric Spaces

q

O1
O2

O3

O4

O5
O6

O7
O8

O9

O11

O12
O13

O14

O10

O15

O16 O17

O18

O19

Figure 1.7: kNN query search with k=5.

1.7 Conclusion

The proposition of processing heterogeneous data, in term of type and dimension,

in metric space as an alternative of the multidimensional space will be of a great

interest. Indeed, in metric space, from the distance values, it is possible to distin-

guish objects of high dimension namely, in the case of data that does not follow

uniform distribution which is the case of the whole real data such as Internet of

Things (IoT) data. Using ball or hyperplane data partitioning in metric space

makes easy the distinction between the right objects and the dismissed objects

during the use of a similarity query search methods such as kNN.

19

2 Internet of Things (IoT)

2.1 Introduction

Nowadays, all devices such as smart home, smartphones, healthcare ones and home

appliances have been applied for data generating. These massive data, generated

by these interconnected devices, are known as Internet of Things (IoT). It is a

dynamic network infrastructure, where physical and virtual "objects" have iden-

tities, physical attributes, virtual personalities, and intelligent interfaces. In the

past few years, numerous researches have been realized on IoT [20],[21]. However,

very few publications have been found discussing and pointing out the challenges

of IoT [22]. The aim of this work is to address one of these challenges which is the

storage and the retrieve of information.

In this chapter, we present the definition and the application of IoT before pre-

senting IoT challenges. The cloud computing and the fog computing, proposed as

solutions of IoT challenges are described in the end of this chapter.

2.2 Ubiquitous Computing in the Future Decade

The development of technology has caused the transition from the stage of personal

computers to smartphones and other portable devices and the interaction between

20

CHAPTER. 2 Internet of Things (IoT)

them has changed our daily lives which induced a fundamental transformation in

computing called Ubiquitous computing (UbiComp) [23]. Several approaches to

ubiquitous computing have been appeared in the literature [24], [25], [26]. The one

is the Weiser’s Calm Computing approach which was proposed by Mark Weiser, the

ancestor of Ubiquitous computing [24]. He defined the intelligent environment as

"the physical world richly and invisibly interwoven with sensors, actuators, displays

and computational elements, seamlessly integrated into the everyday objects of our

lives and connected via a continuous network". After that, Rogers [25] proposed

a human centric UbiComp based on human creativity in using the environment

to enhance their lives. This approach provides a solution of a specific UbiComp

domain. In ref. [26], Caceres and Frida discussed the elements that make up

UbiComp and the characteristics of the system to address the changing world.

They point out two critical technologies for the growth of UbiComp which are

Infrastructure-Cloud Computing and Internet of Things (IoT).

2.3 IoT Definition

The current internet has evolved into a network of interconnected objects so that

they do not sense information and interact with the physical world. Rather, this

development has expanded to provide services for information transfer, analysis

and communication between them. This technological development, called the

"Internet of Things", was appeared first in 1999 through Kevin Ashton in the

supply chain management context [27]. Nevertheless, in the past decade, the term

has become more widely inclusive, covering a wide range of applications such as

health care, utilities and transportation [28].

IoT is the beginning of a new area of computing technology. It relies on the global

incurable network in which different smart things communicate between them,

21

CHAPTER. 2 Internet of Things (IoT)

with machines, and with environments. The IoT definition varies, in literature

from an author to an other.

According to Van Kranenburg et al. [29], IoT is defined as a dynamic global net-

work infrastructure with self-configuring capabilities based on standard and inter-

operable communication protocols where physical and virtual ’Things’ have iden-

tities, physical attributes, and virtual personalities and use intelligent interfaces,

and are seamlessly integrated into the information network. According to Atzori

et al. [30], the internet of things is based on three paradigms: internet-oriented

(middleware), object-oriented (sensors) and semantic-oriented (knowledge). While

this is a necessary distinction, because of the cross-disciplinary nature of the topic,

the potential utility of the IoT can only be released in an application domain where

the three paradigms intersect. According to cluster of European research projects

on IoT [28], "Things" are active participants in business, information and social

processes where they are enabled to interact and communicate among themselves

and with the environment by exchanging data and information sensed about the

environment, while reacting autonomously to the real/physical world events and

influencing it by running processes that trigger actions and create services with or

without direct human intervention. The Radio Frequency IDentification (RFID)

group describes IoT as The worldwide network of interconnected objects uniquely

addressable based on standard communication protocols [23]. According to Gubbi

et al. [23], IoT is an interconnection of sensing and actuating devices providing

the ability to share information across platforms through a unified framework, de-

veloping a common operating picture for enabling innovative applications. This is

achieved by seamless ubiquitous sensing, data analytics and information represen-

tation with cloud computing as the unifying framework. The definition provided

by the ITU (International Telecommunication Union) is that IoT is a global infras-

tructure for the information society enabling advanced services by interconnecting

22

CHAPTER. 2 Internet of Things (IoT)

(physical and virtual) things based on, existing and evolving, interoperable infor-

mation and communication technologies [20]. According to Sharma et al. [21],

the term Internet of Things (IoT) is a general concept for the capacity of the

networked devices to sensor and capture data from all over the world and then

distribute that data across the global internet where they may be analyzed and

used for different useful applications. The IoT is smart machines communicating

and interacting with other machines, objects, environments and infrastructures.

According to Hukeriet al. [31], IoT is the growing network of objects or "things"

integrated using electronics, sensors, software and connections to achieve higher

value and service by communicating and service with the manufacturer operator or

other interconnected devices. Each thing is distinctively by its embedded computer

system but it is able to interoperate within the current internet infrastructure.

From all these definitions, we can conclude that IoT is a dynamic global network

infrastructure, where physical and virtual "things" have identities, physical at-

tributes, virtual personalities and use intelligent interfaces. These things are able

to interact and communicate with themselves and the environment by exchanging

data and information.

2.4 IoT Functional Blocks

A IoT system is composed of a number of functional blocks to facilitate various

utilities to the system. These blocks are device, communication, service, manage-

ment, security and application [32].

• The devices block provides monitoring , detecting, actuating, and surveil-

lance activities. Devices exchange data with other connected devices and

applications, or collect data from other devices. They also process data lo-

cally or send data to centralized servers or cloud-based application back-ends

23

CHAPTER. 2 Internet of Things (IoT)

to process data or perform some tasks locally and other tasks within the IoT

infrastructure depending on temporal and spatial constraints. IoT devices

may also be of various types, for example, wearable sensors, smart watches,

LED lights, automobiles, and industrial machines [32].

• The communication block ensures communication across devices and with

distributed servers. IoT communication protocols generally function in the

data link layer, network layer, transport layer and application layer [32].

• The services block in a IoT system supports different types of functions

including device control, data management, device modeling, data delivery

and device recovery services [32].

• The management block delivers various functions to govern an IoT system

in order to research the IoT system’s underlying governance [32].

• The security of the IoT system providing functions such as authentication,

permission, confidentiality, message integrity and data security [32].

• The application block is the most critical in terms of users as it works as an

interface that delivers the necessary modules to control and supervise various

aspects of the IoT system [32].

2.5 IoT Architecture

The continuous evolution of IoT due to the association of devices with other areas

such as cloud computing allowed the improvement of the sensors, actuators and the

creation of smaller devices with a network connection [33]. In this context billions

or trillions of heterogeneous devices connected are increasing. To manage data

collected from these devices, a flexible layered architecture seems to be a better

way. The basic model is the three layer architecture [34], [35], [36]. It consists of

24

CHAPTER. 2 Internet of Things (IoT)

Figure 2.1: IoT architecture with three layers [38].

the perception layer, the network layer and the application layer (Figure 2.1).

The perception layer is the deepest layer of the IoT architecture. Similar to its

name indicates, its objective is to collect data from the environment. All the data

collection and detection part is done on this layer [37].

The network layer contains the data received by the perception layer. It collects

the data from the inferior layer and sends it to the Internet. The network layer

can only contain a gateway, with one interface connected to the sensor network

and one connected to the Internet.

The application layer obtains information from the network layer and manages

the application on a global base according to the information processed by the

network layer. Based on the type of devices and their purpose in the perception

layer and the way they have been processed by the network layer the application

layer presents the data in the form of: smart city, smart home, smart transporta-

tion, vehicle tracking, smart agriculture, smart health and many other types of

applications [34].

25

CHAPTER. 2 Internet of Things (IoT)

Perception layer

Network layer

Middleware layer

Application layer

Business layer

Figure 2.2: IoT architecture with five layers.

In the literature, some other models have been proposed that add more abstraction

to the IoT architecture [34], [35], [30] where it extended the three-layer architecture

to a five-layer architecture. They add two more layers, middleware layer and

business layer (Figure 2.2).

The middleware layer links a service to its applicant according to addresses and

names. It also links to the database to store, delivers the required services over

the network wire protocols, received data and makes decisions from the network

layer [34], [36].

The business layer supports the full range of operations and services of the IoT

system. The business layer supports decision-making based on big data analysis

[33]. In turn, the supervision and management of the four supporting layers is

done at this layer. In this layer, the results of each layer are compared with the

results of the other layers to improve services and preserve user privacy [34], [36].

26

CHAPTER. 2 Internet of Things (IoT)

Figure 2.3: IoT applications domain [23].

2.6 IoT Applications

IoT plays a major role in enhancing the quality of our lives in several applications

include transportation, healthcare, industrial automations etc. These applications

classified according to Gubbi et al. [23] into four areas: personal and home,

enterprise, public Services and mobile. (Figure 2.3).

2.6.1 Personal and Home

The information captured by the sensors is used by individuals only from their own

network mobile [23]. WiFi is generally used as a network backbone that allows

for a higher bandwidth data transfer (video) and higher sampling rates (sound).

Among home applications, we mention :

• Control of domestic equipment including [21]:

27

CHAPTER. 2 Internet of Things (IoT)

– Energy and water consumption: monitoring energy and water con-

sumption to get cost reduction advice and resources.

– Remote controlled appliances: Turn on and off appliances remotely to

prevent accidents and save energy.

– Intrusion Detection Systems: window and door detection and door

openings and violations to prevent intruders.

– Preservation of art and property: Surveillance of conditions inside the

museums inside museums and warehouses.

• Healthcare:

– Integrating sensors and actuators into patients and their medications

for surveillance and follow up applications in hospitals.

– Home surveillance systems for aged care, which allows to the doctor to

monitor patients in their homes.

2.6.2 Enterprise

In a working environment as an enterprise, the data collected from the networks

are only used by the owners and the data could be selectively liberated [23]. These

networks are intelligent environments and we can cite smart home, smart city,

smart agriculture, smart water and smart transportation [39].

2.6.3 Public Service

The information from IoT networks generally used to improve services, such as

improving energy consumption in smart homes by continuously monitoring every

power point inside the home and use that information to improve the manner in

28

CHAPTER. 2 Internet of Things (IoT)

which electricity is consumed. In the video based internet of things, improve video

monitoring where network camera surveillance applications help monitor targets

and identify suspicious activities. In smart agriculture, improving the agricultural

product where controlling the watering of agricultural land.

2.6.4 Mobile

There are two different domains of mobile applications: intelligent transportation

and intelligent logistics. They are positioned in a distinct domain by the nature of

the data exchange and backbone application needed [23]. Intelligent transportation

[23] will allow large-scale Wireless Sensor Network (WSN) to be applied for online

tracking of travel times, source-destination routing information, queue duration

, pollutant and noise generation. Intelligent Logistics [40] includes the tracking

of transported elements as the efficient planning of transports. The tracking of

transported elements is carried out more locally, whereas the planning of transport

is done by means of a large-scale IoT network.

2.7 IoT Challenges

2.7.1 Secure and privacy

Security is a main challenge since it covers very large scale networks which can see

several types of attacks. The three physical components of the IoT: RFID, WSN

and cloud are vulnerable to these attacks. Security is essential for any network

[41], [42]. According to Juels et al. [43], the most vulnerability component is the

Radio Frequency IDentification (RFID) as it allows the people and objects to be

tracked and no high intelligence may be enabled in these devices.

29

CHAPTER. 2 Internet of Things (IoT)

2.7.2 Availability

The availability of the IoT needs to be realized in hardware and software stages to

provide services at any time and in any place to clients. Software availability relates

specifically to the capability of the IoT applications to deliver services to anyone

at different locations simultaneously and in the hardware availability relates to the

continuous existence of devices that support IoT functionality and protocols [33].

A various devices together with a different variety of communication protocols via

TCP/IP or advanced software stacks could certainly manage the web services that

will be displayed by different middleware solutions [44].

2.7.3 Reliability

Reliability is focused on improving the service delivery of IoT. However, IoT de-

ployment is very complicated and consists of heterogeneous networks and smart

devices, which leads to a reliability challenge. Reliability is needed to be imple-

mented in software and hardware in each IoT layer. For an efficient IoT, the

underlying communication should be robust as e.g. by unreliable perception, data

collection, processing and transmission can lead to long delays, loss of data and

possibly bad decisions, which can lead to disastrous scenarios and therefore can

make the IoT seem less reliable [45].

2.7.4 Mobility

The IoT services delivered to mobile users is causing major challenges. These

challenges include ensuring service continuity while users are on the move, service

interruptions for mobile devices and the huge number of smart devices in IoT

systems also require effective mechanisms for mobility management.

30

CHAPTER. 2 Internet of Things (IoT)

2.7.5 Performance

The IoT comprises an enormous number of components which provide services.

The performance of IoT services is also affected by the performance of their compo-

nents. These components require continuous supervision to ensure client demands

are satisfied. Several measurements can be used to evaluate the performance of

the IoT, such as processing speed, communication speed, device form factor and

cost [33].

2.7.6 Management

Managing IoT resources includes, configuration, accounting, performance and se-

curity is a challenge because trillions of smart devices are connected. With the

growing number of these resources, the development of light weight new manage-

ment protocols to the standard management, that arise from the deployment of

IoT in the coming years, become much more important.

2.7.7 Scalability

The addition of new functions and services for new equipments is a complex process

within the IoT as various hardware platforms and communication protocols are

available. In addition this scalability is achieved while not touching the quality of

the current services.

2.7.8 Interoperability

The existence of heterogeneous and very complex network platforms in addition

to the complexity between different devices types and their different communica-

tion technologies makes from interoperability a challenge. Interoperability must

be addressed by application developers and IoT device producers to guarantee the

31

CHAPTER. 2 Internet of Things (IoT)

service to all the clients, whatever the hardware platform they are using. Also

interoperability must be addressed in the conception and construction of IoT ser-

vices to satisfy clients needs [46]. Furthermore, interoperability must be addressed

in the communication protocols.

2.7.9 Huge heterogeneous data

The wide range of devices connected to the IoT generates data of various types,

sizes and formations. The variation and huge volume of this heterogeneous data

create a serious challenge in the IoT.

2.8 Cloud Computing

2.8.1 Cloud computing definition

Several industry giants, standardization organisations and researchers have tried

to define cloud computing in their understandings and opinions. Cloud comput-

ing is defined by the U.S. National Institute of Standards and Technology (NIST)

as a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with min-

imal management effort or service provider interaction [47]. This cloud model is

composed of five essential characteristics (on-demand self-service, broad network

access,resource pooling, rapid elasticity and Measured delivery), three service mod-

els (software as a service, platform as a service, and infrastructure as a service) and

four deployment models (public, private, community, and hybrid) (Figure 2.4).

32

CHAPTER. 2 Internet of Things (IoT)

Cloud

Characteristics

SaaS

PaaS

IaaS

Private

Community

Public

Hybrid

On-demand
self-service

Broad
network
access

Resource
pooling Rapid

elasticity

Measured
delivery

Figure 2.4: Scheme of NIST Cloud computing definition.

Cloud computing characteristics [47]

1. On-demand self-service: A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automati-

cally without requiring human interaction with each service provider.

2. Broad network access: These computing capabilities are distributed over

the network (e.g. Internet) and used by different client applications using

heterogeneous platforms (such as mobile phones cell phones, laptops and

PDAs) located at a consumer site.

3. Resource pooling: A cloud service provider’s computing resources are ’pooled’

to serve multiple consumers using either the multi-tenancy or virtualization

model, "with several physical and virtual resources dynamically allocated

and reallocated based on consumer request".

4. Rapid elasticity: Capacity may be provisioned and released elastically, in

33

CHAPTER. 2 Internet of Things (IoT)

Figure 2.5: Cloud computing service models [48].

some with automatic release, to move quickly outward and inward as demand

dictates. To the consumer, the capacity available for delivery often seems

unlimited and can be appropriated in any quantity at any time.

5. Measured delivery: Cloud systems automatically check and optimize resource

allocation by leveraging a measurement capability at some level of abstrac-

tion that’ s appropriate for the type of service (e.g, storage, processing,

bandwidth and active user accounts). Resource usage may be monitored,

controlled and reported, ensuring transparency for both the provider and

consumer of consumer of the service used.

Cloud computing service models [47]

1. Software as a Service (SaaS): The ability for cloud consumers to use their ap-

34

CHAPTER. 2 Internet of Things (IoT)

plications on a hosting environment, which can accessible via networks from

from various clients (e.g, browser, PDA, etc.) (Figure 2.5). Cloud consumers

do not control the cloud infrastructure that often uses a multi-tenant system

architecture, i.e. different applications of cloud consumers are tructured in

a single logical environment on the SaaS cloud benefit from economies of

scale and optimization in terms of speed, security, availability disaster recov-

ery and maintenance.The user is not required any storage, installation and

maintenance of the application. However, Internet connectivity is needed to

access the service that is rented by the SaaS service on the cloud. Some

examples of thees services SalesForce.com, Google Mail, Google Docs, etc.

2. Platform as a Service (PaaS): The ability offered to the consumer to provide a

platform for the development of cloud services and applications (Figure 2.5).

The consumer does not manage or control the underlying cloud infrastructure

including network, servers, operating systems or storage, but has control

over the deployed applications and possibly configuration settings for the

application-hosting environment.

3. Infrastructure as a Service (IaaS): The ability offered to the consumer is

to provide processing, storage, networks and other computing resources in

which the consumer is in a position to implement and run arbitrary soft-

ware,including operating systems and applications (Figure 2.5).

A fourth service model, called Networks as a Service (NaaS), was added by Aazam

et al. [49]. The Networks as a Service (NaaS) represents the ability to provide one

or more virtual networks to users. The user could have as many network number

as needed, with the appropriate segmentation and policy enforcement. With NaaS,

the user may also have heterogeneous networks.

35

CHAPTER. 2 Internet of Things (IoT)

Cloud computing deployment Models [47]

1. Private cloud: The cloud infrastructure is operated only a single organiza-

tion with multiple consumers. It can be managed by the organization or

a third party, whether located on-site or off-site premise. There are sev-

eral aspects to the reason for introducing a private cloud in an organization.

Security problems, including data privacy and confidentiality, the cost of

moving data from one infrastructure to another, optimise the use of existing

internal resources and organizations always demand complete control over

critical activities that reside behind the cloud.

2. Community cloud: The cloud infrastructure constructed by multiple orga-

nizations, which share the same cloud infrastructure as well as policies, re-

quirements, values and concerns. The cloud infrastructure could be either

owned by a third party provider or within one of the organizations of the

community.

3. Public cloud: The cloud infrastructure composed of two or more different

cloud infrastructures. Cloud infrastructure that’ s provided for public use.

The public cloud is used by public consumer cloud and the cloud service

supplier has complete ownership of the public cloud along with the provider’s

policy, costing, profit and billing model. Most popular from cloud services

public clouds, such as Amazon EC2, S3,Google and AppEngine.

4. Hybrid cloud: The cloud infrastructure composed of two or more different

cloud infrastructures. Organizations employ the hybrid cloud model to opti-

mize their resources in order to enhance their core competency and to control

their core business on-premises via the cloud. The hybrid cloud has raised

the issues of standardization and interoperability of the cloud.

36

CHAPTER. 2 Internet of Things (IoT)

2.8.2 Cloud computing architecture

The cloud architecture is composed of three layers: infrastructure, platform and

application [50](Figure 2.6).

Figure 2.6: Cloud computing architecture [50].

• Infrastructure layer, is the most basic layer. This layer delivers the pro-

cessing, storage, networking and other computing resources. Cloud service

customers can deposit and execute operating systems and software for their

software to their infrastructure.

• Platform layer, delivers superior abstractions and services for applications in

the same integrated development environment. This layer includes an execu-

tion environment and middleware to support the deployment of applications

using programming languages and tools cloud service.

37

CHAPTER. 2 Internet of Things (IoT)

• Application layer, is the upper layer. The application layer can sense envi-

ronment data and send requests to the cloud simultaneously to process and

obtain sensor information results [49]. It is also necessary to re-post infor-

mation to the IoT, data obtained from the sensor layer and data analysis for

additional processing [51], [52].

2.8.3 Cloud computing challenges

The integration of internet of things (IoT) and the cloud computing make possible

the storage, the process and the analysis of the massive IoT data generated by

the different devices. However, there are challenges that need to be addressed to

allow the cloud to prevail for the good of the world in general and humanity in

particular. These challenges will be presented in what follows.

Security The variety of applications and the heterogeneity of devices in an IoT

environment made it difficult to ensure the privacy and security of the data gen-

erated by these devices. To address security challenges in cloud computing, the

following considerations are important [53]:

• End-user trust and privacy.

• Source authentication between nodes.

• Impenetrable communications between sensors, compute and brokerage nodes.

• Identification and protection of systems from malicious attacks.

• Robust data management and tamper resistant databases .

Current research addresses issues such as malicious detection and recovery, identi-

fication and protection against attacks, prevention of malicious threats, protection

of user information against theft and dynamic mutual authentication [54], [55].The

38

CHAPTER. 2 Internet of Things (IoT)

existing research are operated at a limited angle and the computational capabilities

of the two edges and distance resources have not been fully exploited [56].

Protocol support In order to get different things connected to the Internet,

various protocols are going to be used. So, although they might be similar enti-

ties and operate on different protocols. The solution to this problem can be the

standardization of protocols.

Energy The expansion of data collection and processing resulted in an energy

consumption growth in the cloud data centers of 20 to 25% each year [57]. To

solve this problem, they directed to the distributed cloud, which conducted to the

increase in importance of fog and edge computing platforms. As the massively

expanding number of IoT devices [58], the communication of all devices with the

cloud result in a higher power consumption. Furthermore, smaller IoT devices with

low computing power, storage and battery are being developed [59]. For example,

the change of batteries from time to time in order to power the cameras. Likewise

the encoding of the videos is more complex than decoding. The point is that for

an efficient video compression, the encoder has to analyze the redundancy in the

video [60].

Reliability IoT devices are relying on the cloud to operate providers for time-

critical applications and the impact would directly reflect the program’s output

[61].

Resource allocation Resource allocation in distributed systems is a difficult

challenge in the scale of the current data center. The varying character of net-

work devices, devices components and communication technologies in large scale

distributed systems results in the complexity of resource management techniques

39

CHAPTER. 2 Internet of Things (IoT)

growing [62]. In the other hand, due to the variety of devices that this leads

to the production of different types of data in addition to the amount that will

be produced, it is difficult to predict the resources they will need in the cloud.

Several flat forms developed to solve the problem of resource allocation. Such as

Mesos determines the number of resources to allocate to each network according

to the constraints, while the latter in turn decide which offers to be accepted. So

there is a need for new approaches to resource allocation which help to ensure

the stability and efficiency of these systems. Resource allocation is a critical con-

cept in distributed systems, however it must ensure that these systems have high

performance, latency sensitivity, reliability and energy efficiency [63], [64].

Quality of service Quality of service (QoS) is a critical challenge in cloud

computing systems, as it can be predicted by the system performance during run

time [65]. QoS settings that may be used to measure system performance such as

execution time, cost, scalability, elasticity, latency and reliability, etc [63]. QoS is

increasingly important when it takes into account cloud services, because damaging

the QoS in one of them can dangerously affect the QoS of the complete computing

system. The following are some of the research challenges cited in [66] that affect

the realization of QoS efficiently.

1. The non availability of cloud resources to execute an application during run

time, which increases the execution time and reduces the system perfor-

mance.

2. Making effective resource management mechanisms that take into account

SLAs (Service Level Agreements) reduces the rate of SLA violations and

helps to improve the performance of the computing system.

3. The existence of varying SLA standards for the various cloud providers means

40

CHAPTER. 2 Internet of Things (IoT)

that and a centralized SLA standard is needed to attain the goal of a multi-

cloud environment.

4. Find the trade-off between the various QoS needs due to the vast amount of

IoT applications run on cloud systems using supervised/unsupervised learn-

ing techniques based on AI(Artificial Intelligence) or predictive models.

2.9 Fog Computing

2.9.1 Fog computing definition

The storing and processing of data from various IoT sensors is a critical challenge

in an IoT system. Traditional cloud based IoT systems are posed with challenges

due to the large scale, heterogeneity and high latency observed in some cloud

systems [67]. Consequently, a novel computing paradigm, namely "fog computing",

has been introduced as a complement to the cloud solution. According to NIST

[67], fog computing is a layered model for enabling ubiquitous access to a shared

continuum of scalable computing resources. The model facilitates the deployment

of distributed, latency-aware applications and services and consists of fog nodes

(physical or virtual), residing between smart end-devices and centralized (cloud)

services. The fog nodes are context aware and support common data management

and communication system. They can be organized in clusters either vertically

(to support isolation), horizontally (to support federation) or relative to fog nodes

latency-distance to the smart end-devices. Data processing tasks that require real

time processing of data from end devices can be performed by nearby fog nodes,

leading to low transmission latency [68]. In addition, the fog computing is the

form of distributed computing which functions as the middle layer between IoT

devices and cloud data centers [69].

41

CHAPTER. 2 Internet of Things (IoT)

Characteristics of fog computing

1. Contextual location awareness and low latency

Fog nodes are located in close proximity to IoT devices, implying low latency

services and applications. Moreover considerably more rapid analysis and

response to data generated by devices compared to a centralized cloud.

2. Geographical distribution

The services and applications that the fog focuses on need widely distributed

deployments to ensure QoS for mobile and immobile devices [67]. The fog

network geographically distributes their nodes and sensors in the scenario

of a different phase environment, for example, the healthcare monitoring

system [70].

3. Very large number of nodes

The wide geographical distribution, as reflected in sensor networks for the

most part and the Smart Grid in particular [67].

4. Large scale sensor networks

The fog is distributed resources and has a distributed storage that need

environmental monitoring, in close smart grid applications.

5. Support for mobility Fog applications communicate directly with mobile de-

vices, so they support mobility techniques. Like the LISP protocol that de-

couples host identity from location identity with a dispersed indexing system

[67]

6. Real time interactions

Fog applications necessitate real time interactions, such as real time trans-

42

CHAPTER. 2 Internet of Things (IoT)

mission for traffic monitoring systems, control of a sensitive process on an

oil platform with fog edge devices or sensors...etc.

7. Widespread of wireless access

The wide range of wireless sensors distributed and connected in the network

requires distributed analysis and processing. This is why the fog is very well

suited for wireless IoT access networks.

8. Heterogeneity

Fog nodes are very varied in their nature and will be employed in a large

variety of environments which include a variety of devices and have different

network communication capabilities.

9. Interoperability and federation

Fog elements need to operate in an interoperable environment to ensure a

wide range of services such as data streaming and real time processing .

These services must be federated between domains.

10. Support for real time analytics and interplay with the cloud

The fog nodes are located nearer to the source that generates the data. This

location provides low latency and low context awareness, however the cloud

provides global centralization. Analytics big IoT data requires the localiza-

tion of fog for real-time stream analysis and the globalization of the cloud

for historical lot analysis of big IoT data. Additionally, fog is well adapted

to handle video streaming in small TV support devices, surveillance sen-

sors, live game applications and other applications that required low latency

services in near proximity [71].

11. Scalability and agility of federated, fog-node cluster

43

CHAPTER. 2 Internet of Things (IoT)

Fog Computing is adaptive in nature, at the cluster or cluster of clusters,

with support for elastic computing, resource pooling, data load changes, and

network state variations, to list some of the adaptive features supported [72].

2.9.2 Fog node

Fog computing employs, in addition to centralized cloud data centers, a vast num-

ber of smaller capacity resources closer to the edge of the network, termed fog

nodes [72]. According to NIST [67], fog nodes are middleware elements within

the smart terminal and access network. Fog nodes can be physical or virtual and

are coupled to smart devices or access networks. Fog nodes typically deliver some

form of data management and communication service between the edge layer in

which the smart terminals reside and the cloud. Fog nodes, in particular virtual

nodes, also called cloudlets, can be federated to provide a horizontal extension of

capability over distributed geolocations.

Fog node attributes Several attributes are added to the fog node characteris-

tics to support the deployment of fog computing capability which are [72]:

1. Autonomy, fog nodes are able to function autonomously, with decisions made

locally, at the node or cluster level.

2. Heterogeneity, fog nodes are available in a variety of form factors and can be

employed in a range of environments.

3. Hierarchical clustering, fog nodes are adopting on hierarchical structures,

where different layers providing diverse subsets of service functions and work-

ing collaboratively like a continuum.

4. Manageability, fog nodes are managed and engineered by complex systems

capable of executing most routine most routine functions automatically.

44

CHAPTER. 2 Internet of Things (IoT)

5. Programmability, fog nodes are programmably embedded at multiple levels,

by multiple parties.

Service Models Same case as the cloud computing, these types of service mod-

els can be implemented in the fog nodes [72]:

1. Software as a Service (SaaS): Users are using the fog provider’s applications,

which they are running on a cluster of federated fog nodes managed by the

provider. Intelligent objects can be accessed by the fog node’s applications

via a client or program interface. The infrastructure underlying the fog node,

such as the network, servers, operating systems, and storage, is invisible to

the user.

2. Platform as a Service (PaaS): The fog service provider uses programming

languages, libraries, services and tools to provide services to clients. Witch

they may use the platforms of federated fog nodes.

3. Infrastructure as a Service (IaaS): Users can run arbitrary software, which

can include operating systems and applications that leverage the infrastruc-

ture of the fog nodes forming a federated cluster. Users do not monitor or

control the underlying infrastructure of the fog node cluster, however, they

do have control over operating systems, storage and deployed applications.

Deployment models Similar to cloud computing, the following deployment

models can be applied to fog nodes computing [72]:

1. Private fog node

A fog node is operated by a single organization with multiple consumers.

This node can be independently controlled, managed and operated by the

organization, a third party, or a hybrid of the two, and it can be located

45

CHAPTER. 2 Internet of Things (IoT)

either inside or outside of the organization.

2. Community fog node

A fog node that is provisioned by a consumer community of organizations

that have common concerns. This node can be independently controlled,

managed and operated by one or more of the organizations in the community,

a third party or a combination of them, and it can be located either inside

or outside of the organization.

3. Public fog node

A fog node which is provisioned for open use by the public generally. This

node can be independently controlled, managed and operated by a company,

university, or government organization, or some combination of them, and it

can be located either inside or outside of the organization.

4. Hybrid fog node

A fog node which is a combination of two or more distinct fog nodes (private,

community, or public) that remain unique entities, however, they are linked

by a standardized or proprietary technology that makes data and applications

portable.

2.9.3 Fog architecture

In general, most of the research projects carried out on fog computing have mostly

represented as a three-layer model [53], [73], [74], [75]. Other teams proposed

models with four layers [76], [77], five layers [78], six layers [49] and seven layers

[79].

In addition, the OpenFog Consortium [80] has developed a detailed architecture

46

CHAPTER. 2 Internet of Things (IoT)

reference of the N-layer, which is regarded as an improvement of the three-layer

model. Another three-dimensional architecture (The device dimension, The system

dimension and The functionality dimension) is proposed by [81] However, we will

search for to a three-layer architecture in the following.

In the three-layer model, fog computing extends the cloud service to the edge of

the network, in which a layer of fog is introduced between the terminals and the

cloud. Figure 2.7 illustrates the hierarchical architecture of fog computing. The

hierarchical architecture is comprised of the three following layers:

1. Terminal layer: It is the layer nearest to the terminal user and physical

environment. It comprises a number of widely distribution IoT devices, such

as smart vehicles, sensors, cell phones and smart cards. They are responsible

for sensing and transmitting data to the higher layer for processing and

storage.

2. Fog layer: It is situated at the edge of the network and largely distributed

between terminals and the cloud . It is comprised of a variety of fog nodes,

which typically consists of gateways, routers, access points, specific fog servers

and switches,etc. This layer is important for the interaction and the collab-

oration with the cloud layer, which is connected with this layer.

3. Cloud layer: With multiple high performing servers and storage devices and

delivers different application services. It has strong computational and stor-

age abilities in order to take care of profound computational analysis and

storage of a big IoT data.

2.9.4 Fog computing challenges

1. Security and privacy

47

CHAPTER. 2 Internet of Things (IoT)

FOG layer | Nodes

Fog

Fog

Accelerators

Network

Control

Storage

Accelerators

Network

Control

Storage

Computation

Te
rm

in
al

 la
ye

r
|

Io
T

Se
ns

or
s

&
 A

ct
ua

to
rs

Analysis Service

Monitor Batch

Scheduler

Auto-scaling

Computation

Computation

Data Analysis

Storage

CLOUD layer | Data Centers

Figure 2.7: Architecture of fog computing.

The security of fog computing devices is challenging due to the fact that

they are operated in non-strict locations. The protection and monitoring of

these devices is vulnerable to attacks that could be used to compromise the

fog device system in order to perform malicious tasks such as data hijacking

and eavesdropping. The security solutions proposed for the cloud cannot

support fog computing due to the fact that fog devices operate at the edge

of networks. The operating environment of fog devices can address many

threats that do not exist in cloud computing. The major attacks which can

be launched against fog computing cited in [82] are man in the middle, au-

thentication, distributed denial of service, access control and Fault tolerance.

2. Control and management resources

To ensure the QoS the fog computing should perform a provisioning to pre-

vent the resources to be used in order to provide the service mobility. The

major challenge is that the mobility of the end nodes, since these metrics

such as bandwidth, storage, computation and latency will be modified dy-

namically [82]. In addition, resource management is a challenge due to the

fact that the fog computing must manage the sharing and discovery of re-

48

CHAPTER. 2 Internet of Things (IoT)

sources used by Cloud applications and manage the sharing of resources used

by the devices in the terminal layer.

3. Programming platform

In the fog computing, the computing is performed in the user end edges

nodes that are usually probably run heterogeneous platforms and generally

different from another, so programming in such heterogeneous platforms is

a major challenge.

4. Energy management

Fog computing systems comprise multiple distributed nodes, so energy con-

sumption is expected to be higher than their cloud counterparts. Hence,

much effort is required to develop and optimize new energy efficient proto-

cols and architectures in the fog fog paradigm, e.g., efficient communication

protocols, computing and network resource optimization [82].

5. Fog networking

The fog network gets heterogeneous, situated at the edge of the network and

with extensions to the cloud computing functionality. The fog networking

requirement is to interconnect each required component to the node to main-

tain and insure the quality of service in the core network connectivity and

service delivery on all these components. In the increasing use of IoT in wide

scale use, this use might not be straightforward [70].

6. Quality of Service (QoS)

The quality of service aspect is very important in fog computing and causes a

challenge, according to Anawar et al.[70] classified these challenges into four

dimensions, reliability, delay, connectivity and capacity, that are discussed

49

CHAPTER. 2 Internet of Things (IoT)

as follows:

• Reliability, is most important for data transmission and security in the

core network. In addition, it is required to periodic surveillance by

means of checkpoints in order to recover from a fault.

• Delay, in fog computing is a difficult challenge. As the deployment of

a fog network for applications, which are sensitive to latency, needs a

real time streaming and processing response.

• Connectivity, for the fog networking environment requires providing

partitioning and clustering capabilities for cost minimization, data re-

duction, and an extension of connectivity methods.

• Capacity, the capacity of QoS in [70] is categorized into two groups,

the first group being network bandwidth and the second group being

storage capacity. These are very important factors in enabling and

maintaining effective bandwidth and storage operations. In addition,

real-time response, fog node mobility, and large fog computational vol-

ume are all factors that must be considered to save maximum band-

width with low latency.

2.10 Conclusion

In this chapter, IoT definition, its architecture, the main applications and its chal-

lenges are provided and discussed in addition to modern cloud and fog computing

paradigms that have emerged to support the deployment of IoT based applications.

In front of the great interest of IoT, the presented challenges are to be solved

especially the huge heterogeneous IoI data challenge. The process of this big data in

metric space presents the disadvantage of data overlap as well as its process in the

50

CHAPTER. 2 Internet of Things (IoT)

multidimensional space. A pre-processing step, in order to diminish data overlap

during big IoT data store, will be of a great usefulness. The analytics methods

are supposed be a good candidate for pre-processing big IoT data. Among these

analytics methods, clustering methods which group objects into homogeneous sets

or clusters.

51

3 Clustering Methods of Big IoT Data

3.1 Introduction

The development of big data and IoT is accelerating rapidly and affecting all areas

of technology and businesses. The growth of data produced via the IoT has played

a major role on big data. The widespread use of IoT big data has made it difficult

to analyze. This necessitates development of IoT specific data analytics solutions

which can handle the heterogeneity, dynamicity and velocity of the IoT data [10].

Data mining is the process of extracting useful information or to find out hidden

relationship among data. This information or knowledge is very helpful for business

organizations to grow their business as it is helpful in decision making. Data mining

technology has come across several stages [83].

Big data analytics enables data miners and scientists to analyze huge amounts

of unstructured data that can be harnessed using traditional tools [84]. These

tools are developed using data mining algorithms, based on a specific scenario,

such as the prediction method, association rule methods, classification methods

and clustering methods [85]. Clustering methods are an essential branch of the

data mining family that has been largely applied in IoT applications such as outlier

detection, finding similar sensing patterns, and segmenting large behavioral groups

in real time [86].

52

CHAPTER. 3 Clustering Methods of Big IoT Data

In this chapter, we present definitions of big data and big IoT data. After that, We

focus on different clustering methods since one of these methods (Density-Based

Spatial Clustering of Applications with Noise algorithm) is used, in this work, in

the pre-processing step which will allow a parallel processing of big IoT data. In

the end of this chapter, other big IoT data analytics methods will be provided

after a comparison between the different clustering methods.

3.2 Big Data Definition

The usage of the term "big data" officially arrived in the computing field in 2005

by RogerMagoulus of O’Reilly to depict the massive volumes of data that cannot

be managed and processed by traditional data management techniques as it gets

too complex and vast in size [87], [88]. The use of the term "big data" has occurred

in previous literature, although it is a comparatively new one in business and IT

(Information Technology) [89]. Several studies related to big data are available.

One of these studies, "Digital Universe" [90] defines big data technologies as a

new generation of technologies and architectures that aim to exploit a massive

volume of data with different formats by enabling high-speed capture, discovery

and analysis.

Other studies describe big data in three dimensions 3Vs "volume, variety, velocity"

[91] are regarded as the essential concentrated when defining big data and it is in

consistent with Madden’s [92] definition of big data which say: this is data that is

too big (volume) from different sources, too fast (velocity) as it must be processed

rapidly, and too hard (variety) to process by existing tools.

Another approach to defining big data in expanded on the 3 Vs to 4 Vs where the

aspect of "veracity" for data that is too uncertain [93].

53

CHAPTER. 3 Clustering Methods of Big IoT Data

Attribute, "value", is introduced to give it a greater meaning the 5 Vs of big data.

Importantly, big data is critical to organizations as it facilitates the collection,

storage management and manipulation of massive amounts of data in order to

data to make useful decisions. This qualifies the inclusion of "value" as the fifth

attribute of big value of data collection applies to the intended process or the

predictive analysis. The value of data is closely associated with other attributes

of big data such as volume and variety [94].

In the preceding definitions, the attributes of big data stay the same in an en-

terprise network outside of the "variability" that takes the network infrastructure

into account especially on the integration, evolution of the data and the model

(variability, which takes care of varying data and associated models.) [95].

The appearance of technologies that enable real-time communication with objects

that move in real time, known as spatial and temporal database models that

interact, with data representation calls for a more refine approach to description.

The latter integrates the seventh attribute, which is a "visualization" [96]. This

attribute ensures the readability and accessibility of data presentations that need

many spatial and temporal parameters and relationships associated with each other

[97].

Another study added the 8 Vs of big data introduce a " Validity". It may mean

that the data should be clean, accurate,precise , specific, reliable, valid and useful

for future processing. Every organization should validate the data if it needs to

take the right decisions for the future based on the data collected by the devices.

So, validity is regarded as an important factor for big data [98].

In the case of the 9 Vs of big data, "Vulnerability", the data violation is a criti-

cal concern in today’s age of technology. Hackers are continually and constantly

hacking into systems and databases to gain access to information. The big data

54

CHAPTER. 3 Clustering Methods of Big IoT Data

V1
Volume V3

Velocity

V2
Variety

V4
Veracity

V5
Value

V6
Variability

V7
Visualization

V8
Validity

V9
Vulnerability

V10
Volatility

10 Vs
of big data

Figure 3.1: Brief description of the 10 Vs of big data.

violation is a big breach and hence, vulnerability is also a challenging and critical

characteristic of big data, for securing information against unauthorized persons

and unauthenticated access is a basic need.

Further study of big data added the 10 Vs of big data, "volatility" [99]. They

consider the introduction of "volatility" that is affected by the lifetime of the data

to answer the following question: How long will the data be regarded as valid and

how long long it needs to be stored?. The brief description of the 10 Vs of big

data is shown in figure 3.1. For the case in [100], the researchers presented the big

data intelligence, which refers to the ensemble of concepts technologies, tools and

systems which are able to approximate human intelligence in the management and

processing of big data.

55

CHAPTER. 3 Clustering Methods of Big IoT Data

3.3 Big IoT Data Definition

Big IoT data, term appeared as a result of several searches and technological

development. Recently, Sun et al. [100] added an important feature forming the

10 Vs. It captures all technologies, systems, platforms and facilities which support

the big data processes. In this context the 10 Vs of big data capable of integer

IoT data, where in the area of IoT, the continuous increase in the number of IoT

devices has led to the production of huge amounts of data. According to statistics

[101], the number of devices will be increased by 1 trillion by 2030. As these

devices are numerous, they became a source of big data called "big IoT data". A

most notable characteristic of IoT is its analysis of data on "connected objects"

[85]. The analysis of big IoT data needs various methods for the processing and

the storage of a large amount of IoT data.

3.4 Clustering Methods

Clustering, is a data mining technique that is used as a major method of data

analysis. Clustering employs an unsupervised learning approach and generates

groups for given objects based on their distinctive significant features [102]. Clus-

tering is the process of grouping a set of physical or abstract objects into classes

of similar objects. A cluster is collection of data objects that are similar to one

another within the same cluster and are dissimilar to the objects in other clus-

ters. Clustering algorithms can be categorized into partitioning-based algorithms

hierarchical-based algorithms, grid-based algorithms, model-based algorithms and

density-based algorithms [103].

56

CHAPTER. 3 Clustering Methods of Big IoT Data

3.4.1 Partitioning clustering algorithm

Splits the data points within k partitions. Each partition is considered as a cluster.

Partitioning is performed based on some objective functions. One of these function

minimizes the square error criteria which is calculated as:

E =
∑∑

||p−mi||2 (3.1)

where p the point of a cluster and mi the mean of the cluster. Among these

partitioning methods, we can cite k-means [104] and FCM (Fuzzy CMeanS) [105].

k-means [10] Divides a given data set into k different clusters. This is done

by first, choosing k random points in the dataset as the initial clusters centroids,

then, allocate each data point to the appropriate of these clusters by adjusting

the center. The process is repeated with the output as new input arguments until

the centroids converge to stabilized points.As the final clustering results are highly

dependent on the suitable centroids, the whole process is performed several times

with different suitable initial parameters. For a fixed dataset size it might not be

a problem, however in the context of IoT data the characteristic of the algorithm

causes significant computational overhead. k-means convergence for clustering

with randomness not only this process need time, it also means that k-means may

produce lower quality.

Fuzzy C MeanS (FCM) [105] FCM is based on the k-means concept to par-

tition the data set into clusters. The procedure is as described below:

Compute the cluster centroids and the objective value and initialize the fuzzy

matrix. Compute the membership values stored in the matrix. If the objective

value between consecutive iterations is less than the stopping condition, stop. This

process is continuous until a partition matrix and clusters are formed.

57

CHAPTER. 3 Clustering Methods of Big IoT Data

3.4.2 Hierarchical clustering

A technique of clustering which divides the similar dataset by building a hierarchy

of clusters. This method is based on the connectivity approach of clustering algo-

rithms. It is based on the distance matrix criteria to group the data. It constructs

clusters step by step. In hierarchical clustering, there are two approaches: Clus-

tering agglomeration (top-bottom) and Division (bottom-up). In agglomerative

approach, suitable object is selected and successively merges neighboring objects

according to the distance to the minimum, maximum and average. The process

is continuous until a desired group is formed. The division approach deals with

set of objects as a single cluster and divides the cluster into other clusters until

the desired number of clusters is formed [103]. Among these algorithms we can

cite: Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [106],

Clustering Using REpresentatives (CURE) [107] and Robust Clustering algorithm

for Categorical attributes (ROCK) [108].

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

[106] It is an agglomerative hierarchical clustering algorithm especially adapted

for very large large databases [109]. The BIRCH process starts by building CF-

tree. Condense the data by rebuilding the CF-tree with a larger tree. Then one of

the existing clustering algorithms is used on the CF-tree leaves. After additional

passages performed on the data set and reassign the data points to the centroids

closest to step above. This process continues until k cluster steps are formed.

Clustering Using REpresentatives (CURE)[107] It is an agglomerative hi-

erarchical clustering method that creates a balance between centroid and all point

approaches.[109]. A Divisive approach hierarchy is used and it selects well dis-

persed points of the cluster and then shrinks to the cluster center by a specified

58

CHAPTER. 3 Clustering Methods of Big IoT Data

function. Adjacent clusters are consecutively merged until the number of clusters

reduced to the desired number of clusters. The procedure is given by: Initially

every point is in separate clusters, each cluster is defined by the point in it. The

representative points of a cluster are generated by first selecting well dispersed

objects for the cluster and then shrinking or shifting to the cluster by a speci-

fied factor. At each step of the procedure, two clusters with the closest pair of

representative points are selected and merged together to form a cluster.

Robust Clustering algorithm for Categorical attributes (ROCK) [108]

It is an agglomerative hierarchical clustering algorithm based on the notion of links

[109]. It is a hierarchical clustering algorithm where forming clusters, it uses a link

strategy. Links from bottom to top merge to form a cluster. The procedure is given

by: First considers a set of points in that each point is a cluster and calculate the

links between each pair of points. Build a heap and maintain the heap for each

cluster. A quality measure based on the criterion function be computed between

the pairs of clusters. Merge the clusters that have a maximum value of criterion

function.

3.4.3 Grid-based algorithms

The grid based algorithm is based on partitioning the dataset into number of cells

to form a grid structure. The clusters are formed based on the grid structure.

To build clusters, the grid algorithm uses subspace and hierarchical clustering

techniques [103]. Among these algorithms we can cite: STatisitcal Information

Grid based method (STING) [110], CLustering InQUEst (CLIQUE) [111] and

Merging of Adaptive Intervals Approach to SpatialData Mining (MAFIA)) [112].

59

CHAPTER. 3 Clustering Methods of Big IoT Data

STatisitcal Information Grid based method (STING) [110] It is simi-

lar to the BIRCH hierarchical algorithm [106] for building a cluster with spatial

databases. The process starts by stored the spatial data in rectangular cells using

a hierarchical grid structure. Then each cell is partitioned into four child cells at

the next level with each child corresponding to a quadrant of the parent cell. The

probability is computed of each cell being relevant or not. If the cell is relevant,

apply the same calculations on each cell one by one. Finlay, find the regions of the

relevant cells to form a cluster.

CLustering InQUEst (CLIQUE) [111] A subspace clustering algorithm of

numerical attributes where the bottom-up approach is employed to build clusters.

The algorithm is described in this way: Consider a set of data points,in a one

pass, apply width to the set of points to form the grid cells. Rectangular cells

in a subspace whose density exceed τ are placed in equal grids. The process is

continued recursively to form (q − 1) dimensional units into q dimensional units.

The subspaces are connected to each other to form cluster of equal width.

Merging of Adaptive Intervals Approach to SpatialData Mining (MAFIA))

[112] It is a variant of the CLIQUE algorithm [111]. Unlike the CLIQUE algo-

rithm, it uses a fixed cell size grid structure with an equal number of cells. Using a

grid structure of fixed size cells with an equal number of cells in each dimension of

bins in each dimension, it constructs an adaptive grid to improve the quality of the

clustering. The algorithm is described in this way: In a single pass, an adaptive

grid structure was built by considering a set of all points. Calculate the histogram

by reading blocks of data in memory using bins. The bins are grouped based on

dominance factor α. Choose the bins that are r α times denser than the mean as

p candidate dense units (CDUs). Recursively, the process continues to form new

p-CDUs and merge adjacent CDUs into clusters.

60

CHAPTER. 3 Clustering Methods of Big IoT Data

3.4.4 Model-based algorithms

In a data collection, data points are connected with each other according to differ-

ent strategies such as statistical methods, conceptual methods and robust cluster-

ing methods. Two approaches to model-based algorithms are available: the neural

and the statistical approach [103]. Among these approaches, we present Self Orga-

nized Map algorithm (SOM) [113] as neural approach and Model based clustering

algorithm (COBWEB) [114] as statistical approach.

Self Organized Map algorithm (SOM) [113] Neural networks consider each

cluster as a neuron, and the input data are also considered as neurons. Each

neuron connection is assigned by some weight, that is randomly initialized before

learning these weights in an adaptive manner [115]. SOM [113] is one of the most

widely used algorithms. The SOM is considered as a two layer. Each neuron

represented by n-dimensional weight vector, m = (m1, . . . ,mn), where n is equal

to the dimension of input vectors. The neurons of the SOM are itself cluster

centers, hoverer to accommodate interpretation the map units can be combined to

form bigger clusters. The SOM is trained iteratively. In each training step, one

sample vector x from the input data set is chosen randomly. The distance between

it and all the weight vectors of the SOM is calculated using a distance measure.

After finding the best matching unit, the weight vectors of the SOM are updated

so that the best matching unit is moved closer to the input vector in the input

space [116].

Model based clustering algorithm (COBWEB) [114] The COBWEB algo-

rithm gives a clustering dendrogram called classification tree which characterises

each cluster by a probability description [117]. It is known as an incremental

learner since when a data object is entered, the nodes of the tree are restructured.

61

CHAPTER. 3 Clustering Methods of Big IoT Data

In some situations, it can change the entire structure of the tree considerably.

COBWEB uses the category utility (CU) measure [118] as the criterion function

for determining partitions in the hierarchy. The expected value of CU used in

COBWEB is defined as P (Ai = Vij \ Ck)
2. If the the given data object is in a

cluster Ck, the CU value implies the probability that Ai as the value Vij which

signifies the probabilistic match of the data object to the cluster. The role of cat-

egory utility is to make a trade-off between maximizing intra-class similarity and

inter-class dissimilarity. CU was used as the basis for incremental clustering [118].

3.4.5 Density-based algorithms

Density-based clustering algorithms try to find clusters based on density of data

points in a region [116]. The main idea of density based clustering is that for each

instance of a cluster the neighborhood of a given radius eps has to contain at least

a minimum number of instances MinPts [116]. The data objects are categorized

into: core points, border points and noise points. All core points are interconnected

based on the densities to form a cluster. They can find the cluster based on the

regions that are growing at high density. These are the one-scan algorithms. It is

capable of getting the arbitrary shaped clusters and handle the noise. One of the

most well known density based clustering algorithms is the Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [119] and the Ordering Points

To Identify the Clustering Structure(OPTICS).

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

[119] It is a connectivity based algorithm which consists of three points namely

core, border and noise (Figure 3.2). Given a distance threshold r in DBSCAN the

distance threshold is named eps and a density threshold k in DBSCAN the density

threshold is named MinPts .

62

CHAPTER. 3 Clustering Methods of Big IoT Data

1. The density of a point xi is defined as the number of points ki that are within

a radius r around xi.

2. If ki > k, the corresponding point xi is considered a core point.

3. Two points are considered directly connected if they have a distance of less

than r.

4. Two points are density connected if they are connected to core points and

these core points are in turn density connected.

5. A border point has less MinPts in eps, this point is is in the neighborhood

of a core point.

6. A noise point is defined as any point that is not a core point nor a border

point.

These definitions allow to define the transitive hull of density-connected points,

forming density-based clusters.

Figure 3.2: DBSCAN algorithm based on eps and MinPts [120].

63

CHAPTER. 3 Clustering Methods of Big IoT Data

The algorithm is described by:

1. Set of points to be regarded to form a graph.

2. Create an edge from each point c to the other point of the neighborhood of

c.

3. If the set of nodes N contains no center points, then terminate N .

4. Select a node X that can be connected from c.

5. Repeat the procedure until all center points form a cluster.

Ordering Points To Identify the Clustering Structure (OPTICS) [121]

The difficulty of finding density-based clusters with widely differing densities has

also motivated hierarchical procedures for computing clusters at different density

levels in a single pass [122]. Due to the fact that the connected components

of different density levels are either disjoint or the cluster of higher density is

entirely contained within the lower density cluster, the result of such hierarchical

algorithms can be represented as a tree. Practical approaches for density-based

hierarchical clustering include OPTICS [123]. OPTICS is an extension of the

DBSCAN algorithm that is also based on the same parameters as the DBSCAN

algorithm. The algorithm is as follows:

1. Select a point from the set of points which is a center point if at less Minpts

are within the base distance.

2. For each point c create an edge from c to another point with a center distance

of c.

3. Select a set of nodes that contain center points as a cluster that extends from

c.

64

CHAPTER. 3 Clustering Methods of Big IoT Data

3.5 Comparison Between Clustering Techniques

The comparison of various clustering algorithms are given in table 3.1. Under

partitioned clustering method, k-means clustering dominates and is still the most

popular clustering method. In k-means, even if an object is quite far away from the

cluster centroid, it is still forced into a cluster and thus, distorts the cluster shapes

[124] which produce lower quality of clusters. The final results of the clustering is

heavily dependent on the initial centroids. The whole process is carried out several

times with different initial parameters. For a data set of fixed size this might not

be a problem. However, in the context of big IoT data, this characteristic of the

algorithm leads to heavy computational overload [10]. The k-means algorithms

have problems like defining the number of clusters initially, susceptibility to local

optima and sensitivity to outliers, memory space and unknown number of iteration

steps that are required to cluster. The fuzzy C means clustering is really suitable

for handling the issues related to understand ability of patterns, incomplete/noisy

data, mixed media information, human interaction and it can provide approximate

solutions faster [125].

The main motivations of BIRCH lies on two aspects, the ability to deal with large

data sets and the robustness to outliers [126]. Also the BIRCH can achieve a

computational complexity of O(N) where N is the number of objects. ROCK not

only generates better quality clusters than traditional algorithm, it exhibits a good

scalability property [107]. BIRCH and CURE both handle outliers well but CURE

clustering quality is better than that of BIRCH. On the reverse, in terms of time

complexity, BIRCH is better than CURE as it attains computational complexity

of O(N) compared to CURE O(N2 log N). The ClIQUE algorithm combines the

advantages of density and grid methods. It divides data not only based on the

grid, but also takes density into account. It partitions data into dense and sparse

65

CHAPTER. 3 Clustering Methods of Big IoT Data

sets and focuses on dense grid cell data. However, CLIQUE algorithm divides each

dimension equally according to the user setting. It may lead to a cluster being

divided into several artificial clusters. In addition, the number of connections

will grow exponentially and the computational complexity will be very high at

high-dimensional data sets [86]. The performance results show that MAFIA is

40 to 50 times faster than CLIQUE due to the use of adaptive grids. MAFIA

introduces parallelism to obtain a highly scalable clustering algorithm for large

data sets [116]. DBSCAN (density-based spatial clustering of applications with

noise), which discovers clusters of arbitrary shapes and is efficient for large spatial

databases [125]. OPTICS find clusters of fixed density. It ensures good quality

clustering by maintaining the order in which the data objects are processed, i.e.,

high density clusters are given priority over lower density clusters [116].

66

C
H

A
P

T
E

R
.3

C
lustering

M
ethods

ofB
ig

IoT
D

ata

Table 3.1: Comparison of various clustering algorithms

Algorithm
type

Algorithm
name

Time of
complexity

Suitable for
large scale

data

Suitable for
high

dimensional
data

Advantages Disadvantages

Partitional k-means [104] O(N) Yes No This is one of the most useful
clustering algorithm [125].

-There is no efficient and universal method
for identifying the initial partitions.
- It is sensitive to noise.
- It can produce lower quality of
clusters [10] .

FCM [105] O(N) No No

-The object could belong to all clusters
with a certain value of membership.
-Giving descriptions of objects in
clusters in more detail [127].

FCM suffers from initial partition dependence
as well as noise and outliers like k-means.

Hierarchical
BIRCH [106] O(N) Yes No

-Robustness to outliers [106].
-Suitable for large databases
[109].

-It can achieve a computational
complexity of O(N).
-Handles only numerical data.
-Sensitive to order of data records
[128].
-Inappropriate to high dimensional
datasets.
-Unable to detect arbitrary shape
cluster.

CURE [107] O(N2logN) Yes Yes

-Robustness to outliers .It is proposed
to address the big data challenge,
it uses a random sampling technique
to reduce the computational cost
[86].

It includes both the hierarchical
part and the divided part, which
overcomes the disadvantage of
using a single clustering center
tend to discover spherical clusters
[129].

ROCK [108] O(N2 +Nmmma+
N2 logN) No No

-It use a random sample strategy to handle
large datasets.
-Exhibit good scalability
[107].

It cannot handle differing
densities [129].

Grid
STING [110] O(k) No No It is highly scalable and can handle outliers well It is not suitable for high dimensional

data set.

CLIQUE [111] O(Ck + m k) No Yes
It automatically finds subspaces of high
dimensional data space that allow better
clustering than original space.

The accuracy of the clustering result may
be degraded at the expense of simplicity of the
method CLIQUE.

MAFIA[112] O(cp + pN) No No Adaptive grids have been proposed for rapid
clustering of subspaces clusters [116] Inappropriate to high dimensional datasets.

Model based SOM [113] O(N2m) No No It easily detect the noise .
It able to manage missing data values.

-It is not suitable for high dimensional
data set.
-Generate a sub optimal weights that
are not chosen properly.

COBWEB [114] O(N2) No No
It can achieve high predictability of
the nominal values of the variables
given a cluster [125].

It is not suitable for high dimensional
data set.

Density Based DBSCAN [119] O(NlogN) Yes Yes
-Discovers clusters of arbitrary shapes.
-Efficient for large spatial databases
[125].

It fails to find clusters of varying density
due to fixed eps.

OPTICS [121] O(NlogN) Yes Yes -Find clusters of fixed density . Less sensitive to outliers.

67

CHAPTER. 3 Clustering Methods of Big IoT Data

In table 3.1, N is the number objects, m is the number of initial sub-clusters

produced by the graph partitioning algorithm, mm is the maximum number of

neighbours for a point and ma is the average number of neighbours for a point.

In the partitionel algorithms, the common criterion is relatively scalable and sim-

ple. It consists on finding the Euclidean distance between points and the center

of the available clusters and assigning each point to the cluster with minimum

distance [125]. However, these algorithms include poor cluster descriptors. They

lie on the user to specify the number of clusters in advance. They present high

sensitivity to initialization phase, noise and outliers. They are unable to deal with

non-convex clusters of varying size and density [125]. In addition, they give bad

result caused by the overlapping of data points [130].

Hierarchical method is based on the distance between objects and clusters. The

idea of hierarchical methods is that objects are more related to nearby objects

rather than the farther objects. The major problems which commonly occur in

Hierarchical clustering algorithms are [128]:

• No objective function is directly minimized.

• Sensitivity to noise and outliers.

• Difficulty in handling different sized clusters and convex shapes.

• Difficulty in breaking large clusters.

The grid based clustering algorithms such as STING and CLIQUE has the ability

to decompose the data set into various levels of details. The evolutionary ap-

proaches for clustering start with a random population of candidate solutions with

some fitness function, which would be optimized [125]. The additional advantage

is its fast processing time [131], no need of distance computations and easy to de-

termine which clusters are neighbouring. The model-based method is hypothesized

68

CHAPTER. 3 Clustering Methods of Big IoT Data

for each of the clusters and tries to find the best fit of that model to each other

[116]. Model-based clustering algorithms are far less common than partitioned

and grid based algorithms. Unfortunately, no implementation of model based al-

gorithms is readily available which limits their usefulness in practice. In addition,

they are often more computationally complex than comparable algorithms from

the other categories [132].

In the density based clustering methods, the data space is composed of dense

regions separated by regions of lower object density and a cluster is defined as a

maximal set of density-connected points [125]. Density based clustering logarithms

are used to form clusters of high quality with acceptable time complexity. They

also give strategy to filter noise from real data. They are robust in finding clusters

with different densities. They are suitable for high dimensional data and big data.

3.6 Other Big IoT Data Analytics Methods

In addition of clustering methods, several solutions are currently offered for the

analysis of big data and big IoT data (Figure 3.3). These solutions need the

same or higher processing speed than traditional data analysis with minimum

cost for high volume, high velocity and high variety data [133]. These solutions

are continuously developed to adapt them to the new developments in big IoT

data. The exploration of IoT data has an important role in analytics and, like

the clustering methods, the majority of the techniques are developed using data

mining algorithms, based on a specific scenario, such as the prediction method,

association rule methods and classification methods.

69

CHAPTER. 3 Clustering Methods of Big IoT Data

Figure 3.3: Big data analytics methods [85].

3.6.1 Prediction method

Predictive analytics employs the historical data, referred to as training data, to

determine the results as trends or attitudes in the data.In big data analytics, pro-

cessing demands are changed depending on the nature and volume of data. Rapid

data access and exploration methods for structured and unstructured data are im-

portant concerns related to analysis of big data. In addition, data representation

is an important requirement in big data analysis [85].

3.6.2 Association rule method

Associationn rule mining is centered on the identification and generation of rules

based on the occurrence frequency for numeric and non-numeric data [134] . The

data is processed in two ways The first way, sequential data processing, uses a

70

CHAPTER. 3 Clustering Methods of Big IoT Data

priori algorithms, such as a priori algorithms, such as MSPS (Maximal Sequential

Patterns by using multiple Samples) [135] and LAPINSPAM (LAst Position IN-

duction Sequential PAttern Mining) [136], to identify interaction associations. The

second way of processing the data according to the association rule is temporal

sequence analysis, that uses algorithms to analyze patterns of events in continuous

data.

3.6.3 Classification method

In supervised classification the class (label) of an object is predefined. The major

objective of the classification approach is to develop a tool or algorithm, that can

be used to predict the class of an unknown object, which is not unlabeled. This

tool or algorithm is named a classifier. The objects in the classification process

are more commonly represented by instances or patterns. A pattern consists of

a number of features (also known as attributes). The classification precision of

a classifier is evaluated by the number of test patterns it has classified correctly

[125]. One of the ways of classification SVM (Support Vector Machines), is based

on the theory of statistical learning to recognize patterns in the data and generate

groups. In the same way, K Nearest Neighbor (kNN) is usually mechanisms for

retrieving patterns from large datasets, so that the recovered objects are similar

to the predefined category [137].

However to find unknown or hidden patterns is more difficult for IoT big data.

Also, extracting precious information from big data sets to improve decision mak-

ing is a very critical task. In additional there are usually huge amount of data

produced in IoT applications, however, these data lack having labels, which makes

these types of methods infeasible to be used in IoT environment [10].

71

CHAPTER. 3 Clustering Methods of Big IoT Data

3.7 Conclusion

Compared with data analytics methods namely prediction method, association rule

method and classification method, clustering methods present interesting charac-

teristics speciality DBSCAN (Density-Based Spatial Clustering of Applications

with Noise) and OPTICS (Ordering Points To Identify the Clustering Structure)

algorithms which have surpassed the k-means algorithm in term of homogene-

ity quality of clusters. The use of DBSCAN or OPTICS algorithms, as a pre-

processing step of IoT data store, will result in the creation of clusters of high

homogeneity in term of data type and dimension. These homogeneous clusters

will reduce data overlapping which represents a serious challenge often encoun-

tered during big IoT data indexing in both metric and multidimensional spaces.

Another advantage of these clustering methods is the possibility of introducing

parallelism in both big IoT data indexing process and similarity query search.

72

4 Big IoT Data Indexing

4.1 Introduction

Indexing is a widely used method to store big IoT data and to provide fast answer

when searching similarity queries. Indexing methods were proposed as solution of

the challenge of processing and storing big IoT data so that the similarity query

search proceed efficiently. This challenge came from the production, by various

connected devices in IoT architectures, of different types of data in large volumes

at very high speeds. In this chapter, we will present most indexing methods in

both multidimensional and metric spaces (Figure 4.1). For both spaces, indexing

methods will be grouped into two groups: centralized methods and distributed

methods. At last, a comparative analysis of these methods in term of advantages

and disadvantages will be presented. In this chapter, a particular interest is given

to the indexing methods in metric space regarding their link with this work.

4.2 Multidimensional Space Indexing Methods

Indexing techniques in multidimensional spaces can be categorized into two main

types depending on the structure: hashing methods and tree methods. The hash-

ing methods are regrouped into Locality sensitive hashing methods (LSH) and

73

CHAPTER. 4 Big IoT Data Indexing

Learning to Hash methods (L2H) (Figure 4.2).

Indexing methods

Multidimensional space

Hashing methods

Centralized
methods

Distributed
methods

Tree methods

Centralized
methods

Distributed
methods

Metric space

Tree methods

Centralized
methods

Distributed
methods

Figure 4.1: Global taxonomy of IoT data indexing methods.

Multidimensional space indexing methods

Hashing methods

Locality Sensitive Hashing (LSH)

Centralized methods

PM-LSH

([142],2020)

C2LSH

([143],2012)

QALSH

([144],2015)

PDA-LSH
([13],2020)

Distributed methods

Near bucket-LSH
([147],2016)

LFFIR

([148],2016)

DSML

([149],2017)

Wu et al.

([150],2020)

Learning to Hash methods (L2H)

Centralized methods

RDSH

([151],2015)

DMVH

([155],2018)

Distributed methods

SupDish

([157],2017)

DISH

([156],2019)

Tree methods

Figure 4.2: Hashing methods in multidimensional space.

74

CHAPTER. 4 Big IoT Data Indexing

4.2.1 Hashing methods

4.2.1.1 Locality Sensitive Hashing methods (LSH)

Hashing is an approach that consists in transforming the data object into a low-

dimensional representation, or in an equivalent manner into a small code of bits.

Locality Sensitive Hashing methods (LSH) and their variants are widely used meth-

ods [138][139][140][141]. The LSH scheme has been first introduced by Indyk et al.

[138] to be applied in the binary Hamming space {0, 1}d and later extended to be

used in the Euclidean space Rd by Datar et al. [139]. LSH maps the points in the

data set to buckets in hash tables by using a set of predefined hash functions that

are designed to be locality sensitive so that close points are hashed to the same

bucket with high probability [142]. In this work, the presented LSH methods are

regrouped into centralized methods and distributed methods.

4.2.1.1.a Centralized methods

• Collision Counting LSH (C2LSH) is a scheme which can ensure the quality

of the query by selecting the size of the LSH function appropriately and the

collision threshold dynamically [143].

• Query-Aware Locality Sensitive Hashing (QALSH) [144] utilized two tech-

niques to improve upon accuracy. The first technique introduced query-aware

hash functions by creating a B+-tree on each random projection. The sec-

ond technique performing incremental range queries until top-k candidates

are found.

• PDA-LSH (Projection Distance Aware LSH) is a locality sensitive hash method

proposed to speed up the approximate c-ANN search with a low cost of index

maintenance [13]. It is based on the use of the LMS-tree [145] which indexes

the pairs (oi, id) of ith projection of an object with their identifier.

75

CHAPTER. 4 Big IoT Data Indexing

• PM-LSH [142] in this method, the points are transformed into a low-dimensional

space, called the projected space. The coordinates of a point in the projected

space are the point’s hash values. They use PM-tree to organise these points.

However, this index presents the difficulty of estimating the original distance

between the points after the results of a query are obtained. The storage

space consumption by the hash tables. The complexity of the query search

needs the computation of the hash function of a query in addition to the

computation of probability on the candidate points.

The above mentioned methods use a number of hash tables that are necessary to

ensure the quality of the search. However, because of the limitations of storage

space and server processing ability, centralized indexing schemes are not feasible.

LSH enables sublinear search time in high dimension, but usually requires long

hash codes. To generate compact codes, it is realized that hash functions should

be adapted to data distribution because indexing schemes become impractical for

large data objects [146].

4.2.1.1.b Distributed methods

• Near bucket-LSH this method, composed by Kraus et al.[147], integrated

LSH and cosine similarity metrics in a P2P Content Addressable Network

(CAN) architecture to enhance network efficiency when searching near buck-

ets.

• LSH-based Fusion Features for Image Retrieval (LFFIR) Liao et al.[148]

introduced a distributed image retrieval framework for similar search content,

which can effectively integrate image retrieval based on multi-functional in

the Chord P2P network into a cloud data center.

• Decentralized Search for Large and Mobile wireless networks (DSLM) is a

76

CHAPTER. 4 Big IoT Data Indexing

proposed system for large mobile wireless networks, where it divides the

entire network in to smaller regions. Allowing nodes to join, leave, distribute

metadata or make requests. Next the LSH function is used to distribute

similar group documents to the same region. Then a geographic routing

method based on the region is applied to route messages messages between

nodes [149]. However, the LFFIR and DSML indexing schemes insufficiently

account for the load balancing problem, that is one of the key issues on the

overall performance of the distributed system [150].

• A hashing method to obtain a balanced distributed p2p network is proposed

in [150]. The concept of virtual node is used to adapt to dynamic changes

in data load and network environment.

Nevertheless, the LSH family needs a longer code length to ensure search perfor-

mance, which leads to a higher storage cost, thus limiting the scalability of the

overall algorithm [151]. In additional, as LSH originally was developed to find

objects in a fixed radius, to guarantee the quality of the intended to search for

objects in a fixed radius, to unsure the quality guarantee, it needs to construct

indexes for different radii. Thus, in this case, hundreds or thousands of hash tables

are constructed, which results in high space and search costs [142].

4.2.1.2 Learning to Hash methods (L2H)

To minimize the search cost in LSH methods, Learning to Hash methods (L2H)

have been proposed for their ability to learn similarity by preserving hash func-

tions adapted to a given data set. These methods are classified into four categories

according to the degree of supervision, namely: unsupervised hashing, supervised

hashing, semi-supervised hashing and deep hashing [152]. According to the litera-

ture [153] [154], L2H methods adopts Hamming ranking (HR) as a query technique

77

CHAPTER. 4 Big IoT Data Indexing

that probes the buckets in ascending order of their Hamming distance to the query.

4.2.1.2.a Centralized methods

• Dynamic Multi-view Hashing (DMVH) [155] capable of adaptively increas-

ing hash codes according to dynamic changes in the image. These hashing

techniques also use multi-view features to achieve more efficient hashing per-

formance.

• Robust Discrete Spectral Hashing (RDSH) [151] is a hashing approach to

facilitate large-scale semantic indexing of image data. It is aimed at learning

a set discrete binary codes and robust hash functions within a unified model.

This approach is not adequate for a large and dynamic databases [152].

4.2.1.2.b Distributed methods

• Distributed Indexing by Sparse-Hashing (DISH) is a distributed kNN in-

dex for cloud-based systems, based on sparse hashes [156]. It can help to

overcome challenges related to large-scale index distribution associate vec-

tors to several index nodes based on their orthogonal similarities and search

for large-scale distributed images. DISH supports distribute documents and

queries in a balanced and redundant way between nodes [156].

• Supervised Distributed hashing (SupDisH) is an efficient method that learns

discriminative hash functions by taking advantage of the semantic informa-

tion of the labels in a distributed manner [157]. The distributed hash prob-

lem is discussed in the context of classification, where it is expected that the

learned binary codes are distinct sufficiently for semantic retrieval [157].

LSH methods operate with the predefined hash functions regardless of the underly-

ing dataset, where L2H learns custom hash functions based on the dataset. While

78

CHAPTER. 4 Big IoT Data Indexing

there is an additional training step necessary, some studies have shown experi-

mentally that L2H outperforms LSH in terms of query efficiency [158], [159],[160].

However, the Hamming distance is a gross indicator of the similarity between the

query and the elements of a bucket as it is discrete and has a limited number of

values. Consequently, Hamming ranking may not define a good order for buckets

having the same Hamming distance from the query. As a consequence, HR gener-

ally probes a large number of unfavorable number of adverse buckets, leading to low

efficiency. A solution is to employ a long code so that the Hamming distance can

classify buckets into larger categories. However, the long code has challenges such

as time-consuming sorting, high storage demand and low scalability, in particular

for large-scale datasets [161].

4.2.2 Tree methods

4.2.2.1 Centralized methods

The centralized indexing techniques, in the multidimensional space, can be clas-

sified in two major approaches: the space partitioning, which uses space cells to

index the data, and data partitioning which uses cells of similar objects (approxi-

mation function) to index the data (Figure 4.3).

4.2.2.1.a Space partitioning methods

Several previous studies have focused on indexing through tree structure that relies

on the successive division of space. In the multidimensional space. Among these

methods of space partitioning, we can cite the following:

K-dimensional tree (Kd-tree) is a static method based on the partitioning

of space into K dimensions [162]. It is based on the division of a dataset into two

equal subspaces (Left, Right) by the median m of the dataset.

79

CHAPTER. 4 Big IoT Data Indexing

Multidimensional space indexing methods

Tree methods

Centralized methods

Partitioning of
space

Kd-tree

([162],1979)

KDB

([166],1981)

Quad-tree
([168],1974)

Partitioning of data

Hyper-cubes regrouping methods

X-tree

([177],1996)

BB-tree

([176],2019)

R-tree

([12],1984)

R+-tree
([174],1987)

R*-tree
([175],1990)

TPR-tree

([178],2000)

TPR* +-tree
([179],1987)

SR-tree

([172],1997)

D-tree

([180],2015)

SUSHI-tree

([173],2011)

Hyper-planes regrouping methods

B-tree
([167],1979)

B+ -tree
([182],1993)

0UB-tree

([181],199700

STCP-tree

([183],2012)

Distributed methods

Hashing methods

Figure 4.3: Centralized tree methods in multidimensional space.

This process of dividing the spaces repeats recursively. The data is structured in

the form of a binary tree. The principal disadvantage of the Kd-tree is that it

is unbalanced since the hyperplane space divider does not partition planes in the

best place. This creates overlaps between neighboring regions, and this causes the

cost of I/O operations to be higher [163]. Additionally when searching for a kNN

query in high-dimensional spaces, most of the points in the tree will be traversed

and the efficiency is not better than with an exhaustive search [164], [165]. On the

other hand, partitioning the space using hyperplanes in the Kd-tree in situations

where the query point is close to the boundary between two neighbor regions.

It is necessary to visit the two neighbor regions, This affects the response time

negatively [162], [166].

KdB-tree [166] is a combination of Kd-tree [162] and B-tree[167]. It is a dy-

80

CHAPTER. 4 Big IoT Data Indexing

namic structure and balanced tree. It is proposed to improve I/O performance of

Kd-tree [162]. The KDB-tree can’t ensure minimal storage consumption. It only

considers point in time data and insufficient search performance.

Quad-tree [168] partitions the two-dimensional space into quadrants and con-

sists of many quadrants and comprises various partition index spaces. It is not

balanced as is not selecting the optimal division of the space as a Kd-tree . More-

over, Quad-tree ignores the distribution of the data in space partitioning process

[169].

4.2.2.1.b Data partitioning methods

This approach is based on the partitioning of data by the way of packages grouping

data, also called "enclosing forms". These methods can be classified into two

classes, the first one based on the grouping of objects into rectangles of minimum

delimitation (hyper-cubes). The second class are the methods that are based on

the grouping of objects in regions of minimal delimitation (hyper-planes).

Hyper-cubes regrouping methods

1. R-tree proposed first by Guttman [12]. It is considered as one of the first

methods that indexes data in multidimensional spaces in the form of a bal-

anced hierarchical partitioning into sets of rectangles called Minimum Bound-

ing rectangles (MBRs). It is a spatial access method used to index geographic

coordinates. Minimum Bounding Rectangles (MBR) is determined by a pair

of vectors where the components of the first vector are two less than or

equal to those of the second vector. This pair of coordinates defines the

smallest volume that encloses a given set of points and/or geometric forms.

R-tree is efficient structure for range queries [170] dynamic [12] and balanced

81

CHAPTER. 4 Big IoT Data Indexing

[171] However, it suffers from the problem of overlap between the rectangles,

which leads to a difficulty in finding the objects in these rectangles. In higher

dimension the time and the complexity of the computations is augmented

[172]. In additional it rapidly degrades for higher dimension [173].For its

improvement, many methods have been proposed. R+-tree [174] eliminates

the overlapping rectangles by their dividing until all overlaps are eliminated

however, it causes the increase of the tree height. R∗-tree [175] minimize the

overlap of rectangles by inserting a few child nodes before dividing a node.

It improves partitioning by aggressively reinserting data objects leading to

a more efficient search performance [176].

2. eXtended node tree (X-tree) [177] is an additional multidimensional index

that is similar to the R-tree which aims to limit the problem of overlapping

forms. It adopts a completely different strategy for partitioning nodes, which

are extended with variable sizes, called extended nodes.It is enhances the R∗-

tree by introducing overlap-minimizing splits for the objects that caused the

overlap. Eventually degenerating to a sequential scan [173].

3. Sphere and Rectangle (SR-tree) [172] is based on the grouping of objects

into regions, where each region is the intersection of a hyper-rectangle and a

hyper-sphere. The idea is that intersections of these shapes give small areas,

which avoid overlapping. However, this solution is very complex to build

these shapes and to find the intersection areas.

4. Subspace based High-dimensional Indexing (SUSHI-tree) [173] is proposed

to index high dimensional objects. The space is divided into subspaces by

clustering. The internal nods are clusters defined by a list of upper and lower

bound values for the relevant dimensions of the cluster and a pointer to its

corresponding child node representing the objects. However, in this index

82

CHAPTER. 4 Big IoT Data Indexing

the division of the space into subspaces does not guarantee that each cluster

contains objects of the same type.

5. Time Parameterized R-tree (TPR-tree) [178] is a variant of the R∗-tree for

processing movement data. It supports queries for present and future posi-

tions of moving objects. Moving objects are enclosed in a bounding box that

does not shrink. The position and period of an object are implemented by a

function.

6. TPR∗-tree [179] is an improvement of TPR-tree. It added insertion and

deleting to the TPR-tree.

7. Decomposition Tree (D-tree) [180] is a virtual tree without internal nodes

used for the indexing of the multidimensional motion. Which are replaced

by an encoding method based on integer bit-shifting operation.

8. Bubble Buckets tree (BB-tree) [176] is based on the combination of the Kd-

tree structure [162] and X-tree [177]. It recursively partitions the data space

into k partitions, its leaf nodes store objects in elastic buckets named Bubble

Buckets (BB). Each BB contains m-dimensional objects. Similarity search

queries are not considered in the structure.

Hyper-planes regrouping methods

1. B-tree [167] in a binary tree, each node of order d contains at most 2d keys

with 2d + 1 pointers. The search in a B-tree depends on the branch from

the node to the query key. When the query is less than the saved key, the

left branch is chosen, if the key is greater, the right branch is chosen. The

drawbacks need a linear space for storage and logarithmic time for the basic

operations of insert and find. In addition, the B-tree only works well for

one-dimensional data [181].

83

CHAPTER. 4 Big IoT Data Indexing

2. B+-tree [182] tree is an m-ary tree that has a varied and usually large number

of children per node. A B+-tree consists of a root, internal nodes and leaves.

The root can be either a leaf or a node with two or more children. Many

indexing schemes are based on the B+-tree.

3. STCB-tree [183] indexes the trajectories of the motion in the past, the present

and anticipates the future.

4. UB-tree (Universal B-tree) [181] is an improvement of the B-tree. It organizes

the objects in an n-dimensional space (called universe) so that they can be

stored, managed, retrieved from and deleted from from and deleted from

peripheral storage very efficiently.

4.2.2.2 Distributed methods

The distributed methods, cited in what follows, are grouped in figure 4.4.

Multidimensional space indexing methods

Hashing methods Tree methods

Centralized methods Distributed methods

General indexing framework

([184],2009)

EMINIC

([185],2009)

A_tree

([186],2011)

CG-Index

([189],2010)

RT-can

([191],2010)

LC-index

([194],2015)

RT-HCN

([193],2016)

RB-index

([195],2019)

U2-tree

([197],2019)

CR-index

([198],2014)

CC-index

([200],2010)

UQE-index

([201],2012)

SeaCloudDM

([203],2013)

Multi-attribute
index

([202],2021)

S2-tree

([204],2020)

DAPR

([205],2020)

BGI

([13],2020)

Geospatial
data indexing

([209],2019)

Three-level
hierarchical index

([210],2020)

ITTIS

([14],2020)

Textual and spatial objects
indexing

([212],2022)

SSKQR+

([213],2022)

Hierarchical
multidimensional indexing

([216],2019)

Indexing within
lossless

Compression data

([211],2020)

Data lakes approach

([214],2020)

DPISCAN
([207],2020)

Haystack queries
([215],2021)

Figure 4.4: Distributed tree methods in multidimensional space.

84

CHAPTER. 4 Big IoT Data Indexing

General indexing framework is the first index that was presented for indexing

data in the cloud system based on the overlay network [184]. This index has

two layers, with the servers organized in the overlay network, thus every server

constructs their own local index for accelerating retrieval of data. The global

index is constructed over the local index by choosing part of the local index and

publishing it to the network. The global index is used to provide an overview of

the local index. While this index scheme is scalable and flexible, the Peer-to-Peer

structure is not well suited for cloud systems [185].

A-tree proposed, first, by Papadopoulos et al.[186], is the appropriate method

for cloud computing environments. It is a distributed and scalable indexing scheme

for multidimensional data, capable of handling both point and range queries. It

is based on the combination of R-tree [12] and Bloom filters [187]. It is only used

for multidimensional data.

Efficient Multi-dimensional Index with Node Cube (EMINC) [185] is a

multi-dimensional two-layer index. It provides fast query processing and efficient

index maintenance. It is an approach for indexing large IoT datasets: a hierarchical

approach to building a multidimensional index for a cloud system. It combines

R-tree [12] and Kd-tree [188] for data organization.

CG-Index [189] is a two-layer index constructed over the BATON network [190]

and it employs B-tree to address one-dimensional high speed queries.

R-Tree based index in CAN (RT-can) [191] is a multidimensional index-

ing scheme in data centers. RT-CAN combines the CAN-based routing protocol

(Content Addressable Network) [192] and the R-tree-based indexing scheme [12]

to address efficient multidimensional query processing in a cloud system. RT-CAN

85

CHAPTER. 4 Big IoT Data Indexing

organize storage and computation nodes in an overlay structure based on an ex-

tended CAN protocol. The RT-CAN index is constructed on top of local R-trees

and published on the cluster servers. They use a method to mapping a selected

R-tree node to a CAN node. However, RT-CAN is constructed in a p2p network,

with nodes dispersed largely in the real world and unstable connections between

nodes, resulting in unreliable services [193]. RT-CAN is not scalable regarding the

dimensionality of the data. The original overlay network must be expanded and

additional servers need to be added to reconstruct the index, thus costing. The

query processing algorithms are designed to support point, range and KNN queries

for the RT-CAN index.

Local and Clustering Index (LC-index) has been proposed by Feng et al.

[194] as a combination of the RT-CAN [191] index and the CG index [189] what

enhanced the flexibility and the insertion of multidimensional range queries. This

index is dynamic and supports the operations of insertions and deletions however,

it presents a high cost of storage.

Hierarchical Irregular Compound Networks (RT-HCN index) Hong et

al.[193] proposed an indexing scheme that integrates R-tree [12] and a routing

protocol based on Hierarchical Irregular Compound Networks (HCN). This scheme,

called RT-HCN is proposed to organize storage and compute nodes in an HCN

overlay, in server-centric cloud storage system. The RT-HCN is composed of two

layers. In the first layer, the data is distributed in different servers and locally

indexed using R-tree. In the second layer, the local indexes are distributed across

servers as a global index. Although R-Tree is a balanced and dynamic tree, the

search process degrades when the index data is large due to the fact that R-Tree

has the overlapping multiple MBR regions.

86

CHAPTER. 4 Big IoT Data Indexing

RB-index [195] is an efficient and scalable multidimensional indexing scheme

for the BCube topology [196] in modular data centers. RB-Index is a two-layered

indexing scheme that integrates the BCube-based routing protocol and the R-tree-

based indexing structure. It use routing tables of a set of switches, in order to build

an indexing space with n dimensions. This space is divided into n subspaces. Each

server creates its R-tree and then publishes its address and its MBR in its table

of routing. In RB-Index, they are building several distinct indexing spaces with

selected dimensions according to the query history. Every server takes over part of

the indexing space according to a mapping scheme. According to the authors, the

division of the space into several sub-spaces during the publication of the R-tree

nodes in the form (ip, MBR) produces false positives.

U2-tree Gao et al. [197] proposed a universal two-layer indexing scheme built

on cloud storage system with tree-like DCN (Data Center Networks) topologies

called U2-tree. The first layer, named local index, facilitates the query processing

on local hosts. The second layer, named global index, locates the host in which the

data is stored. The construction of the U2-tree starts with the build of the local

index by using the B+ tree [182] for local data to efficient query search. The global

index indicates in which local host the data is located. Each host will manage a

portion of the global index within a certain range. The U2-tree support point

query, range query, and kNN query search however, the cost of the update and the

maintenance of the distribution index is high.

Continuous Range Index(CR-index) Wang et al. [198] proposed a continu-

ous range Index (CR-index) for indexing observed data based on its value ranges

and type attribute. CR-index builds a compact indexing scheme where a mea-

surement data items and the observation data items are aggregated into boundary

blocks based on their interval blocks. The indexes are built to answer range queries.

87

CHAPTER. 4 Big IoT Data Indexing

However, this approach is only able to index data with a unique dimension [199].

In additional the unique dimension in the CR-index made it useless for data of

higher dimensions [198].

Complemental Clustering Index (CC Index) [200], is an additional index

based on Key-value store. A secondary index table has been built for each indexed

column. In order to improve the random readability, more detailed information

of each record has been pushing into the secondary index table, thus the random

reading might change to a sequential reading. Also, the author suggested some

methods of optimization to support multidimensional queries. CC Index is simple

to implement, however, it suffers from various drawbacks. firstly, it requires a

large amount of additional storage space when there are many indexed columns,

secondly CC Index does not support adding not support adding or deleting indexes

after the table has been built.

Update and Query Efficient index framework (UQE-Index) Ma et al.[201]

proposed an efficient update and query index framework (UQE-Index) based on a

key-value store that can support a high insertion rate and simultaneously provide

an efficient multidimensional query. The UQE-index divided data into two types:

historical data and current data, which were indexed with different granularities.

For the historical data, a finer combined index was applied. A spatial index was

built inside a temporal index. For the current data, in order to handle high updat-

ing pressure, a coarse-grained index was applied They used data partitioning and

tree-based indexing to develop the HBase-based UQE-Index framework to make

data management more efficient. According to them, the response time under the

UQE index is lower than that of the EMINC framework. However, this framework

supports only range query. The kNN search query, which is more generalized than

the range query, was not tested. The UQE-index has proposed a complete index

88

CHAPTER. 4 Big IoT Data Indexing

structure that deals with spatial-temporal attributes, there are other attributes in

the IoT domain [202].

SeaCloudDM [203] the continuous data generated from IoT devices is being

received, stored and processed in a sea-computing layer. The products of the sea-

computing computing layer are numeric key sample values that are considerably

smaller than the original data from the devices. This key sample data is passed

to the cloud data management layer for later processing. Relational Data-Base

and Key-Value (RDB-KV) store combined cloud data management model is em-

ployed to manage SQL queries and keyword search. However this method manages

massive data from heterogeneous sensors in the cloud, which suffers from latency

problem.

Multi-attribute index [202] in this approach, four types of attributes are em-

ployed: spatial, temporal, keyword and value. A specific indexing method is allo-

cated for each attribute and the inclusion of these four indexes in a combined index

needs a certain sequencing that determines the performance of the query search.

The query search performance is improved by taking into account all possible se-

quences and by automatically determining the most efficient combined index for

each query. This approach focuses on enhancing the performance of queries search

and authors do not specify the way to store indexed IoT data [202]. The B+-tree is

used for storing the temporal attribute and value attribute.The R-tree is used for

store spatial attributes, That are usually used to describe the geographic location

of IoT data. Since B+-tree is a balanced structure and the it can support range

queries efficiently. However the authors, only considering numerical data which is

one-dimensional data.

89

CHAPTER. 4 Big IoT Data Indexing

S2R-tree [204] which integrates spatial and semantic information. It adopts

two layers. The first is a spatial layer used R-tree to group objects according to

their geographical coordinates. The second is a semantic layer, transforms the

high dimensional semantic vectors to a low dimensional space.

Distributed Access Pattern R-tree (DAPR-tree) [205] for spatial data

retrieval in a distributed computing environment. The balance of the index struc-

ture and parallelization of the workload between several main computation nodes

allows rapid data recovery. For this reason, the authors apply the R-tree structure

on a three-tier distributed environment: the principal tier is the input of the global

index and manages the data partitions for the sub-tier. The sub-tier constructs

a number of sub-tree indexes for different data partitions, this sub-tree adopts an

R-tree, R-tree * or APR tree. A data and computational tier provides data and

computational resources to take care of the operations of the DAPR tree. During

the search for a given query, the master node sends the query to all partitions

at the same time. Each partition searches locally. Then all partitions send their

results to the master node. DAPR is an efficiently indexing approach for spatial

data retrieval in a distributed environment, it assures the balancing of data dis-

tribution, workload and data access. However this tree is limited to applications

that have relatively stable data access patterns. It is not adapted to a dynamic

IoT environment. In addition, the master node can overload when multiple queries

arrive. moving object

Block Grid Index (BGI) Yang et al. [13] proposed this index which is a

distributed method for large-scale moving objects with two-layer: grid-based index

and DBGKNN (a distributed k-nearest neighbours query search algorithm based

on BGI). According to the authors, this work requires an optimization of the index

structure by the incremental update of the kNN query search when the objects

90

CHAPTER. 4 Big IoT Data Indexing

are moving. Moving objects represent the only type of data that the BGI method

can index. temporele data

In-memory based Two-level Index Solution in Spark (ITTIS) is another

framework for processing temporal data in a real-time distributed system based

on Apache spark memory [14]. ITTIS consists of three levels: the first level is

the partition unit, which is responsible for partitioning all temporal data into

distributed nodes. Each partition consists of a set of intervals. Each interval

is defined by (start and end, value). The second level is the local index unit,

every partition, is indexed by MVB-tree (MultiVersion B-tree) [206]. The third

level is the global index unit, which is located in the master node. It is used

to collect the intervals of all partitions in the master node of the spark Apache.

They built the BST (Binary Search Tree) for all these intervals. The search for a

query is done in two steps. The first step is to find the candidate partition. The

query search is achieved in the BST tree by pruning the sub-trees that are not

suitable. In the second step, the search begins in the candidate partition to find

the searched record. It provides native support for querying big data. However,

dividing the research into two stages is that it can take a long time. In additional,

this framework only supports temporal data and a specific type of queries that can

not be replaced by other types of IoT data.

Distributed and Parallel architecture with Indexing for structural clus-

tering using SCAN algorithem (DPISCAN) Kumar et al.[207] proposed

this approach to thread-level parallelism on the Apache Spark distributed archi-

tecture. A cache-based indexing technique creates indexes for the neighborhood

vertices using CSS-tree [208] structure to take care of a combination of different

threshold values. This work focuses only on data indexing and no query search

method was proposed. geospatial

91

CHAPTER. 4 Big IoT Data Indexing

Geospatial data indexing In [209], a geospatial data indexing was performed

in the cloud where a parallel R-tree [12] and its parallel variants were constructed.

Three construction methods were used: Apache Spark in-memory, Apache Spark

on disk and MapReduce. Each one is looking for the fastest way in building,

updating and executing spatial query. One of these three methods, the Apache

Spark in-memory, reduces significantly the time for indexing geospatial data and

querying ranges. However, this method is only used for geospatial data where the

dimension is limited to three.

Three-level hierarchical index Hu et al. [210] presented a three-level hierar-

chical indexing method to enhance Apache Spark and the Hadoop Distributed File

Storage System (HDFS) for managing data from Earth observations and model

simulations. They combine the global kd-tree index for the master node with the

local hash table for each data node, which provides a scalable indexing strategy for

searching large raster geospatial data in a distributed environment. They devel-

oped a data distribution strategy to address query parallelism while maintaining

high data locality. This method only supports querying large geospatial data and

is not tested for other data types.

Indexing within lossless compression Data Doan et al. [211] proposed an

indexing model consisting of a lossless compression technique for IoT data as well

as the benefits of bit-padding, bit-blocking, and Huffman coding. It minimized the

data size during the compression, which does not require fixed 8-bit streams. The

index is based on timestamps that supports access to compressed data without full

decompression. which is linked in during the compression process. This framework

focused on building indexing within lossless compression for floating point time

series data. According to the authors, this framework needs to be enhanced by

addressing temporal alignments and de-duplication problems when IoT streaming

92

CHAPTER. 4 Big IoT Data Indexing

data is sourced from multiple devices. However, the use of indexes based on

timestamps made this method adapted for a specific type of data [211].

Textual and spatial objects indexing Bavirthi et al. [212] proposed an in-

dexing mechanism combining textual and spatial objects for skyline querying. An

inverted file is used for indexed textual objects and attached to the R∗-tree. How-

ever, adapting skyline queries in a dynamic environment like IoT is a difficult

process when removing and inserting tuples at any time or in specific time inter-

vals.

SSKQR+ Recently, other framwork in the literature are introduced to recover

the most relevant data [213]. They introduced framework for spatio-textual skyline

querying with R+ tree indexing technique. To relate keywords provided by the

user and the geometric data of the user with an efficient sky R+ named SSKQR+.

The skylines of data with geometric information are recovered by searching the

geometric data points closest to the user’s location. The recovered skylines are also

verified by specifying a threshold value ’k’ named top-k skyline querying. However,

the use of the R+-tree is much difficult during construction and maintenance. In

addition this framework has no consideration for the IoT environment.

Data lakes approach According to the Seattle Database Research report [214],

a new approach called data lakes is proposed to store and analyze a huge amount

of data. In this approach, data is flowed to a distributed storage system such as

HDFS where they are analyzed and managed instead of uploading them to data

warehouses which induced high maintenance cost [215].

Haystack queries The approach, proposed by Weintraub et al. [215], aims to

optimize needle in a haystack queries in cloud data lakes. This approach consists

93

CHAPTER. 4 Big IoT Data Indexing

on the construction of an index structure that maps indexed column values to

their files. Parallelism is used, in this approach, for ensuring the scalability in

both compute and storage senses. The cost of this index is significantly high and

the data load time is much longer.

Hierarchical multidimensional indexing A hierarchical multidimensional in-

dexing method based on binary space partitioning (BSP) was proposed by Wan

et al. [216] for efficient spatial query processing. After evaluating k-d-tree, quad-

tree, k-means clustering and Voronoi diagram data structures, they found that the

Voronoi diagram data indexing method is suitable for general query operations

with a response time of O(log(n)). However, the dimension limitation and the

specific type of query make this method difficult to generalize.

4.3 Metric Space Indexing Methods

The characteristics of IoT data, the diversity of type, format and dimension require

us to consider a metric space. Several benefits of searching in a metric space are

available. The most important is that a larger number of data types can be

indexed, as this approach is based only on the calculation of distances between

objects and not on their content [15].

4.3.1 Centralized metric space indexing methods

Centralized indexing techniques in metric spaces are classified into two main ap-

proaches. The first approach partitions the space and it is divided into two con-

cepts: the hyperplane partitioning and the ball partitioning. The second approach

partitions the data (Figure 4.5). In the following, some centralized techniques,

classified according to the two above mentioned approaches, will be presented.

94

CHAPTER. 4 Big IoT Data Indexing

Metric space indexing methods

Tree methods

Centralized
methods

Partitioning

of space

Hyperplane
partitioning

BS-tree

([217],1983)

MBS-tree

([218],1992)

GH-tree

([220],1991)

GNAT

([222],1995)

EGNAT

([223],2011)

CGH
([227],2014)

V-tree
([219],1987)

BM-index
([224],2019)

VD-tree

([225],2021)

Ball
partitioning

VP-tree

([229],1993)

mVP-tree

([231],1999)

MM-tree

([232],2007)

Onion-tree

([233],2011)

IM-tree

([221],2012)

XM-tree

([234],2019)

Mapping
pivots

partitioning

D-index
([236],2003))

eD-index

([238],2003)

iDistance

([239],2005)

M-index

([240],2011)

SPB-tree

([241],2015)

Partitioning

of data

M-tree

([242],1997)

Slim-tree

([242],2000)

DBM-tree
([245],2004)

DBM*-tree

([246],2007)

Mx-tree

([247],2013)

PM-tree

([248],2019)

Super M-Tree

([242],2019)

Hollow-tree

([250],2019)

Pre-computed

distances methods

AESA
(251,1994)

LAESA
(253,1994)

EP

([255],2013)

I-LAESA
(256,2016)

Distributed
methods

NOBH
([235],2014)

Figure 4.5: Centralized metric space indexing methods.

4.3.1.1 Space partitioning

Indexing techniques, based on space partitioning, are grouped into two indexing

methods based on the partitioning concept: indexing methods based on the hy-

perplane partitioning and indexing methods based on ball partitioning. Other

indexing methods, proposed to reduce the computation of distances in a metric

space, will be also presented. In these methods, the metric space is partitioned

into vectors by mapping functions.

Hyperplane partitioning

• BiSector tree (BS-tree) [217] is a recursive binary tree constructed basing on

the generalized hyperplane partitioning. The coverage radii of each pivot are

determined and stored in the corresponding nodes. The radius of coverage

represents the maximum distance between the pivot and all objects in its

95

CHAPTER. 4 Big IoT Data Indexing

subtree. The type of search in this index is range query only.

• Monotonous BiSector tree (MBS-tree) is a modification of the BS-tree pro-

posed by Noltemeier et al. [218] in order to minimize the cost of computing

distances when searching for a query range. The pivots in the nodes of the

tree are minimized so that the pivots corresponding to the left subtree and

the right subtree are copied in the corresponding inner child nodes, respec-

tively.

• Voronoi tree (V-tree) [219] is a ternary tree with each node representing at

least two and at most three points of O. The root node is allowed to represent

only one element. The V-tree is unbalanced structure. If a new leaf v has

to be created in order to store a new point P and Q is P ′ nearest neighbor

of of the (three) points stored in the father node of v, then Q (redundantly)

has to be stored in v too. The insertion of new objects into new leaves of

a V-tree (for example objects O4, O5 and O6 (Figure 4.6)), induced a new

space partitioning in Voronoi diagram.

O4
O5

O6

O1

O2

O3

O4

O5 O6

O1 O2 O3

O1

O3

(a) (b)

Figure 4.6: (a) Insertion of new objetcs in the V-tree. (b) Corresponding space
partitioning in Voronoi diagram [219].

96

CHAPTER. 4 Big IoT Data Indexing

• Generalised Hyper-plane tree (GH-tree) [220] is similar to BS-tree since both

partition the dataset recursively via the generalized hyperplane principle.

The distinction is that Generalised Hyper-plane tree (GH) uses the hyper-

plane between the pivots p1 and p2 to determine the subtrees and not using

covering radii as a pruning factor in the search process. The two points p1

and p2, chosen randomly, partition the space into two regions. The other

objects are associated to their closest pivot p1 or p2 and thus, a generalized

hyperplane that separates the dataset into two subsets is created (Figure

4.7). The space complexity of GH-tree and BS-tree is 0(n) and O(nlog(n))

respectively and distance calculations are necessary to build the tree. The

disadvantages of the above structure lie in the search operation, where for

each node, two distance operations are applied, which results in a higher

cost of the search, especially the chosen pivots no guarantee of the optimal

partition of the space, making the degeneration of the indexes.

P2

P1

O1

O2

O3 O6

O4

O7

O8

O10

O5

O11

O12

P1 P2

O1
O4

O7
O8

O10 O2

O5

O3

O6

O11
O12

(a) (b)

Figure 4.7: (a) Hyperplane space partitioning (b) Structure of the GH-tree [221].

97

CHAPTER. 4 Big IoT Data Indexing

• Geometric Near neighbor Access Tree (GNAT) is a static and m-ary tree

[222]. It is a generalization of the GH-tree. The difference is that GNAT

uses n pivots in each internal node instead of two pivots (Figure 4.8). The

data set O is divided recursively into n subspaces S = {S1, S2 · · ·Sn} by the

set of pivots P = {p1, p2 · · · pn}. The rest of the objects are assigned to the

subspaces according to the closest distance to a pivot of pi ∈ P . This index

increases memory requirements and computational costs due to selecting new

sets of pivots repeatedly.

Figure 4.8: Example of partitioning used in GNAT-tree (a) and the corresponding
tree in (b) [15].

• Evolutionary Geometric Near-neighbor Access Tree (EGNAT) [223] is an

improvement of GNAT. It is dynamic and it allows node organization and

98

CHAPTER. 4 Big IoT Data Indexing

update after initial bulk loading, using placeholders for deleted (or changed)

objects. However, it does not guarantee the non-overlaps between the inner

nodes.

• Balanced Metric space (BM-index) [224] is proposed as a solution for the

unbalanced partitions in Voronoi diagram. It is based on pivot permutations

scheme in the weighted Voronoi partitioning to eliminate under- and over-

filled buckets (Figure 4.9). However, the calculation costs are very high when

calculating the time for the convergence of the algorithm of construction and

the complexity of the weight of the pivot.

Figure 4.9: Voronoi cells for pivots p1,p2,p3: (a) 1-level tessellation, (b) pivot
permutations [224].

• Voronoi Diagram tree (VD-tree) [225] is a dynamic Metric Access Method

(MAM). It gathered the coverage radius strategy by the Slim-Tree [226] node

partitioning heuristic flexibility and the rigid space partitioning of Voronoi

diagrams. VD-tree reduces overlap between nodes by dynamically exchang-

99

CHAPTER. 4 Big IoT Data Indexing

ing overlapped elements. This method eliminates the overlap between nodes.

It is based on the displacement of the element furthest from the represen-

tative which implies the reduction of the calculation cost. However, the

displacement of these elements leads to obtaining unbalanced partitions.

• Complet Hyper-plane tree (CGH-tree) [227] is the combination of GH-tree

and mVP-tree [228] by two pivots. It partitions the space recursecement with

two hyperbolas and two ellipses. It is not guaranteed the balancing.

Ball partitioning The benefit of ball partitioning is the fact that it only needs

one pivot p and the resulting subsets contain the same amount of data, assuming

that the median distance dm is utilized. Several indexes based on ball partitioning

have been proposed such as:

• Vantage Point tree (VP-tree) is a binary tree built on the partitioning of the

space by the balls as a function of the distance [229]. In VP-tree, the pivot p

is selected randomly (Figure 4.10). The median dm of the distances of the set

of objects to the pivot is calculated. Then the median dm is used to define

a ball B(p, dm) that will divide the space into two disjoint regions. The VP-

tree is very costly in terms of distance and time computed, particularly in the

high-dimensional data space in which the the number of branches retrieved

is great [230].

• Multiple Vantage Points tree (mVP-tree) [231] is a generalization of the VP-

tree [229]. It represents an m-ary version of the VP-tree. The nodes are

partitioned into several " segments " by concentric rings with the center and

equal cardinals instead of one.

100

CHAPTER. 4 Big IoT Data Indexing

I

II

dm

p

Figure 4.10: Description of the VP-tree.

In fact, it is based on the quantiles rather than the median. The function

of this type of index is therefore very similar to that of the VP-tree. The

construction time is in O(n.logn). mVP-tree improves the VP-tree [228] and

a greater improvement of mVP-tree is obtained by employing many pivots

per node [17].

• Memory based Metric tree (MM-tree) [232] this method divides the metric

space successively into four regions using two balls which are constructed by

two random pivots p1 and p2 (Figure 4.11). Region I is the intersection of

the balls. Regions II and III are the differences of each ball from the other.

Region IV is the rest of space. The distance between (p1, p2) is the radius

of the two balls . However, the partitioning of the MM-tree may generate

subspaces of very different sizes, which involves the production of strongly

unbalanced structures [233]. In addition, this index does not support high

dimensions.

101

CHAPTER. 4 Big IoT Data Indexing

r

P1 P2

II III
I

IV

O1

O2

O3

O4

O5
O6

P1P1 P2

O1 O2 O3 O4
O5 O6

Figure 4.11: Example of a MM-tree indexing of 8 objects [232].

• Onion-tree is the extended version of MM-tree [233]. It recursively parti-

tions space into non-overlapping regions using hyper-spheres to define dis-

joint subspaces (Figure 4.12). It introduces three features: a partitioning

method that controls the number of disjoint subspaces generated at each

node, a replacement technique that can change the pivots of leaf nodes in

insertion operations and extended query algorithms kNN to support the new

partitioning method and including a new visiting order of subspaces. The

increase in the number of partitions in the space provides a fast indexing

of complex data and accelerates search to answer similarity search queries.

However, the issue with the above structure is the extended construction due

to the reinsertion of objects.

102

CHAPTER. 4 Big IoT Data Indexing

Figure 4.12: Example of two expansion procedures applied to a node N [233].

• Intersection Metric tree (IM-tree) [221] divides recursively the dataset into

five disjoint regions, by selecting two farthest points as pivots p1 and p2.

The fourth region is partitioned into two regions using a plane. Figure 4.13

represents the IM-tree building at a given stage of the recursive splitting

process of the dataset. The regions I, II, III, IV and V collapse to level 2.

The IM-tree structure is composed of:

– Leaf nodes: consists a subset of the indexed objects.

– Internal node:

∗ N1 for the intersection.

∗ N2 for the partial ball centred on p1.

∗ N3 for the second partial ball centred on p2.

∗ N4 for the remaining space close to p1.

103

CHAPTER. 4 Big IoT Data Indexing

∗ N5 for the remaining space close to p2.

Despite the fact that improves the MM-tree and onion-tree structure, the

external region of the balls in the IM-tree, causes the degeneracy of the

index for the massive data.

Figure 4.13: Description of the IM-tree [221].

• eXtended Metric tree (XM-tree) [234] divides the space with spheres. They

use two structures, sequential and tree structure, to reduce the volume of

the outer regions of the spheres, creating extended regions as inspired from

the X-tree [177] and inserting them into linked lists as extended regions, and

excluding empty sets that do not include any objects. Figure 4.14 represents

the XM-tree building at a given stage of the recursive splitting process of

the dataset. The regions I, II and III collapse to level 2, the nodes eXt1,

eXt2 collapse to the same level. The elements are distributed according to the

partitions to which they belong. XM-tree nodes have the following structure:

Leaf nodes (objects), internal node (Normal Directory) and extended nodes

104

CHAPTER. 4 Big IoT Data Indexing

(chained list of objects). The advantage of this structure is that it is simple

Figure 4.14: Description of the XM-tree [234].

to identify to which partition an element belongs, while ensuring no overlap

between nodes of the same level of the tree. In addition the extended regions

help to speed up the kNN search due to the exclusion of some objects that

are not needed to compute the relative distances of a query object.

• Non-Overlapping Balls and Hyper-planes tree (NOBH-tree) [235] is based

on the recursive division of the space into six regions by using two pivots

(p1, p2) ∈ O (Figure 4.15). The rest of the objects are separated so that the

evaluation of the distance of an element si into p1 and p2 can only contain

the region Si. This excludes overlapping regions when answering a point

request. The distance between p1 and p2 is called the node hop and the

regions are divided using both a metric hyperplane and two ball regions,

where the radius of the ball r is the node hop. This method suffers from the

high cost of insertion and search.

105

CHAPTER. 4 Big IoT Data Indexing

Figure 4.15: Six regions that can be combined to create NOBH-tree members [235].

Mapping pivots partitioning

• D-index is a metric structure at several levels by using the ρ-split functions,

one for each level, to create buckets for storing objects [236]. Here, the ρ-

split functions of individual levels use the same ρ. In figure 4.16, a ρ-split

function based O7 is used at level 1, and a ρ-split function based on O3 is

used at level 2. Objects in the exclusion bucket ‘-’ (i.e.,O3, O5, O6) at level 1

are candidates to be divided at level 2, and the exclusion bucket of the last

level forms the exclusion bucket of the D-index [237].

• eD-index is an extension of the D-index with a modified split function [238].

• iDistance is a B+-tree based dimensional indexing method for similarity

search in vector spaces [239]. The iDistance partitions dataset into n clusters

C and establishes a reference point pi for each cluster Ci, i ∈ {0 · · ·n − 1}.

Every object o ∈ O is then assigned a numeric key according to the distance

106

CHAPTER. 4 Big IoT Data Indexing

from its cluster’s reference object, the iDistance key for an object is:

iDistance = d(pi, o) + i.C (4.1)

Figure 4.16: Example of the D-index [237].

These reference points are used to transform the space into unidimensional

for each partition. The formula maps all objects in any cluster Ci to interval

is: [i.C,(i+1).C] (Figure 4.17-a). Mapped objects are indexed by a B+-tree

and the search is performed by one-dimensional range queries. However in a

range query R(q, r) several intervals of the iDistance keys determined which

need to be accessed in order to process the query (Figure 4.17-b).

Figure 4.17: Principles of the iDistance [240].

• Metric index (M-index) This index is an extension of the iDistance [240]. It

partitions data using Voronoi diagram in several levels (Figure 4.18). In M-

107

CHAPTER. 4 Big IoT Data Indexing

index the clusters of iDistances [239] are replaced by the cells of Voronoi. The

Voronoi cell centers and the corresponding objects to each cell are mapped

by the iDistance method. Mapping of elements of a metric space into a

numerical domain, allows the execution of precise and approximate searches

algorithms using interval queries.

Figure 4.18: Dynamic cluster tree with 3 levels [240].

• Space-filling curve and Pivot-based B+-tree (SPB-tree) [241] In this struc-

ture, the SFC (Space Filling Curve) function is used to portion the space

into a compact region in the form H and transform the space into a one-

dimensional space. The objects mapped by this function are indexed by the

B+-tree (Figure 4.19) . The SPBs are components of B+-tree with MBB

(minimum bounding boxes)and the objects are stored in a RAF access page.

The RAF page stores the objects in the ascending order of their SFC values

and build and manipulates B+-tree with minimal cost and minimal storage

by regrouping data in compact regions. In addition, it features allow efficient

algorithms for handling similarity search and similarity joins. However, the

use of parallelism during the construction steps such as space transformations

and prepossessing can be done difficultly [152].

108

CHAPTER. 4 Big IoT Data Indexing

Figure 4.19: Construction framework of an SPB-tree [227].

In D-index [236], eD-index [238], iDistance [239], M-index [240] and SPB-tree [241]

for the mapping of the pivots in the space, the data in the metric space are forced

with coordinates. However, this mapping is generally deformed. This means that

the distance between two points in the metric space generally not equal to the

distance between two points in the mapped space.

4.3.1.2 Data partitioning

The data partitioning of the set of points is done by their functions in relation to

the selected pivots. Among these techniques we cite the following:

• M-tree is a kind of dynamic and balanced metric trees, which supports con-

secutive insertion [242]. Its leaf nodes store all the elements, while its in-

ternal nodes store selected elements called representatives. Each one of the

representatives has a covering radii in which, the data is partitioned into a

ball with a pivot and radius (Figure 4.20). This method is dynamic and

balanced however, its performance degrades by the overlap between nodes

which increases the possibility of multi-way traverse. It is not scalable for

high volumes of data [243].

109

CHAPTER. 4 Big IoT Data Indexing

Figure 4.20: Descriptive scheme of the M-tree [18].

• Slim-tree is an improvement of the M-tree [242] in order to reduce the degree

of overlap between nodes [226]. It introduces a new splitting technique based

on the Minimum Spanning Tree (MST). The main drawback of this structure

is the possibility of creating nodes that contain empty nodes, thus strongly

limiting the performance of the index, mainly in the case of high dimensional

spaces [244].

M-tree [242] and Slim-tree[226] are height-balanced structures that achieve

very good performance both in terms of disk access and run time mainly

because of the height of the trees are very short. However, the performance

of these two structures degrades very easily because the overlap radius of

110

CHAPTER. 4 Big IoT Data Indexing

nodes and the overlap between nodes increases such that a large number of

subtrees must be analyzed when processing a query [245].

• Density Based Metric tree (DBM-tree) is an extension of the Slim-tree [245].

It was the first dynamic MAM to control overlap, which minimizes the over-

lap among high-density nodes by relaxing the height balancing rule (Figure

4.21). Subtrees are made deeper in denser regions of the metric space, and

less deep in regions with many more objects. It was discovered that reduc-

ing the overlap of nodes indeed reduces the number of accesses to the nodes,

improving performance. It is a balanced structure. It decreases the over-

lap between balls and the number of distance calculations when searching a

query. Despite these advantages the reorganization of the data for balancing

the tree adds an additional computation time.

• DBM∗-tree is an improvement of DBM-tree which aims to avoid the recal-

culation of distances in the choice of the appropriate sub tree during the

construction process [246]. The authors proposed a matrix of distances be-

tween all objects in each node. However, this solution has the disadvantage

that the storage space for the distance matrix at each node is not sufficient

in big data.

111

CHAPTER. 4 Big IoT Data Indexing

Figure 4.21: Description of the DBM-tree [246].

• MX-tree [247] is an M-tree extension with the creation of a super node,

which is inspired by the X-tree (Figure 4.22). The MX-tree provides a large

search area by extending the super node to the metric spaces completely. A

new division method of nodes is introduced in the MX-tree to address the

necessity of the low cost of index construction. In addition, an inner index

is proposed in the MX-tree to transparently manage the CPU costs in the

extended leaf nodes due to the introduction of the super node.

Figure 4.22: Structure of the MX-tree [247].

112

CHAPTER. 4 Big IoT Data Indexing

• PM-tree in this index, for every leaf overflow, a split algorithm is used to

create a new node and to distribute the elements between them [248]. Each

node promotes one element to the upper level that stores it and the coverage

radius. The upper levels may be updated recursively, if necessary. This

process guarantees the structure is always balanced. However, the problem

is if an inner node split when splitting an inner node, selecting an element

to be promoted and remove it from the node is not possible, as each element

is a pivot that represents a branch. The algorithm employs the aggregate

nearest neighbor query to solve this problem. This algorithm minimizes the

sum of distances to the set of ball pivots, among other aggregation functions.

This strategy building compact indexes that increase the performance of k-

nearest neighbors. This is achieved due to the faster convergence of the query

algorithms.

• Super M-Tree is an extension of the M-Tree [242] where the approximate

sub sequence and subset queries become nearest neighbor queries [249]. The

authors introduced the spaces of metric subsets as a generalized concept

of metric spaces. That use different function the distance, to calculate the

distance between objects in internal nodes and its sub tree.

• Hollow-tree is a strategy capable of handling missing data, caused due to

the fact that they have not been observed or recorded [250]. It is mainly

based on two different techniques CFMLI (Complete First and Missing Last

Insert) and ObAD (Observed Attribute Distance). The CFMLI technique is

used to index the observed data, with missing values (with NULLS) at the

nodes of the leaves while the ObAD technique is applied to compute the set

of distance functions, based on the possible combinations of observed and

missing values, to estimate the similarity score according to the observed

113

CHAPTER. 4 Big IoT Data Indexing

attributes in the two elements. However, the existence of NULLS values

could impact the indexing in a general way due to the fact that the leaves

are full but contain NULLS data.

Pre-computed distances methods Other methods use a distance matrix

for storing pre-computed distances from each database object to a set of pivots.

Among these methods we cite the following:

• Approximating and Eliminating Search Algorithm (AESA) is generally re-

garded in the literature as the more efficient MAM [251] [252]. It is based

on an n2n matrix of distances between the n objects, which means that it is

very costly in terms of calculating the distance to O(n2), which is why this

method is not practical in the case of large data sets. From the authors point

of view [251], the AESA is only suitable for for small datasets of at most a

few thousand objects.

• Linear AESA (LAESA) is proposed in ordor to minimize the construction

cost of AESA [253]. It just needs O(kn) distances in the construction cost.

However, it wastes some search efficiency compared to the original AESA.

AESA and LAESA are static methods. They build an index structure based

on fixed data sets and there is no way to insert or remove objects from the

structure [254].

• Extreme Pivoting (EP) this index is based on the selection of a set of essential

pivots (without redundancy) covering the entire database [255].

• Improvable LAESA (I-LAESA) is an improvement of LAESA [256]. It re-

duces the calculation of distances in the search for a query. LAESA only uses

an exact distance from k pivots to other objects, on the other hand I-LAESA

takes an additional estimated value distance. The estimated distance is not

114

CHAPTER. 4 Big IoT Data Indexing

expensive to calculate and it is possible to be updated during the search and

to be approximated to the exact distance piecemeal.

All these methods use a distance matrix to remove the objects and avoid some

distance calculations during the search. Nevertheless, these methods require more

space to store the pre-computed distances, and their I/O costs are often high

because the data is not clustered in this way [252] [257]. In addition, these methods

are not adequate for big IoT data.

4.3.2 Distributed metric space indexing methods

The distributed methods, cited in what follows, are grouped in figure 4.23.

Metric space indexing methods

Tree methods

Centralized methods Distributed methods

GHT*

([258],2008)

VPT*

([258],2008)

GHB

([262],2018)

M-CAN

([239],2006)

M_chord

([259],2008)

MESSIF

([228],2007)
ADMS ([263,2019)

Distributed M-tree

([264],2020)

DM-index

([6],2018)

BCCF

([5],2020)

Figure 4.23: Distributed metric space indexing methods.

GHT∗ Authors in [258] presented the GH-tree in parallel. The aim is the dis-

tribution of data storage on several servers. The AST (Address Search Tree)

represents a binary search tree that is based on the GH-tree [220]. The GH-tree

115

CHAPTER. 4 Big IoT Data Indexing

is generated in each server and client, this tree is charged to the storage and to

find the queries. The leaves of this tree are pointers to the buckets BID (Bucket

IDentifier) or point to another server by NNID (Network Node IDentifier). This

solution is efficient for data distribution. However, they are used for range queries,

so they do not cover the kNN search.

VPT* is a VP-tree distributed in a P2P network [258]. The AST (Address

Search Tree) represents a binary search tree that is based on the VP-tree [229].This

tree is charged to the storage and to find the queries. It is semilar to GHT∗ [243] in

the structure of the inner node and the leaves, with the exception of in the case of

the VP-tree structure, just half of the distances are store with respect to GH-tree,

as only one pivot is contained in each each inner node.

M-Chord this index uses the M-tree to index local peer data [259]. It is based

on the mapping of the data space into a one-dimensional domain and traverses this

domain using the Chord routing protocol [260]. The M-chord operates a vector

index method iDistance [239] that divides the data space into clusters Ci, finds the

reference points pi in the clusters and defines the one-dimensional mapping of data

objects based on their distances from the cluster reference point. When searching

a range query, the space to be searched is specified by iDistance intervals for such

clusters that intersect the query sphere.

M-CAN it combines CAN and iDistance [239] for similarity search in metric

space .In this method, the set of pivots P={p1, p2, · · · , pN} are used to map objects

o ∈ O to an N-dimensional vector space RN [261]. The used mapping function F(o),

applied on the set of objects O, F : O→ RN is defined as:

F (o) = (d(o, p1), d(o, p2), · · · , d(o, pN)) (4.2)

116

CHAPTER. 4 Big IoT Data Indexing

The pivot based filtering is used to reduce the number of evaluated distances.

For routing, each peer manages a coordinate based routing table containing the

network identifiers and coordinates of its neighboring peers in the virtual RN space.

In the range query search the routing algorithm transmits the query to the neighbor

with the region closest to the target point in the vector space.

The above cited approaches GHT∗, VPT* and M-can do not mention algorithms

for kNN queries. M-chord and M-can are efficient for data distribution. However,

GHT∗, VPT* and M-can are used for range queries only, so they do not cover the

kNN search.

GHB-tree is inspired from GH-tree [262]. The first idea is to limit the volume of

the space. The goal is to eliminate some objects without the need to compute their

relative distances to a query object. They proposed a parallel search algorithm on

a set of real machine, in p2p network [262]. This tree has two pivots p1 and p2 to

split the space into left and right regions using a hyperplane (Figure 4.24). The

leaf nodes, in the left and right subtrees, contain a subset of the indexed data with

a maximum cardinal equal to cmax. This index has proven its efficiency during

kNN search when compared with the onion-tree and the slim-tree [262].

Figure 4.24: Parallel version of GHB-tree [262].

Asynchronous Metric Distributed System (ADMS) is a three-levels dis-

tributed architecture for processing similarity queries in large-scale metric spaces

117

CHAPTER. 4 Big IoT Data Indexing

[263]. In the first level (Figure 4.25), the root peer mapped the data to a vector

space and requests a mission to distribute the data between the master peers. In

the second level the master peers received a mission of data distribution, they com-

municate with each other to divide the data (using the principle of requester/edi-

tor). For the distribution of data they are used Minimum Bounding Box (MBB)

of the R-tree . After dividing the data, each master peer is assigned its data set.

The data set is divided into equal parts and distributed to their peer workers. In

the third level, each peer worker builds its index using M-tree.

In ADMS the objects are recursively divided into disjoint equal-sized partitions,

by master peer. They continue to divide their own object fragments into equal

size fragments and distribute them to their child peers. The M-Tree is used for In-

dexing the objects distributed to the peer worker in the vector mapped space. .In

additional, they introduced the publish/subscribe communication model to asyn-

chronously exchange messages to decrease time wasting in network interactions.

Figure 4.25: Structure of AMDS architecture [263].

118

CHAPTER. 4 Big IoT Data Indexing

Distributed M-tree this method uses M-tree to solve the similarity queries on

complex data in multimedia databases only [264]. It is distributed on the Apache

Spark framework. The similarity search query uses the kNN algorithm and only

the first k response vectors are retained to be sent to the master. The rest of

response vectors is ignored. This drawback reduces the efficiency of the kNN

search algorithm.

Deployment Model (DM-index) this index was proposed for maintenance

and recovery in the fog [6]. It is developed for eliminating redundancy, narrowing

the search space and reducing the number of traversed services and recovery time.

However, this model index is used only for industrial IoT data and was not tested

for other types of IoT data.

Binary tree based on containers at the cloud-fog computing level(BCCF-

tree) In this model [5], indexing of IoT data is performed at the fog layers due

to their processing power, latency reduction and node distribution. This model

can be adapted to emerging IoT technologies to improve the quality of indexing

IoT data in real time. In theBinary tree based on containers at the cloud-fog

computing level (BCCF), the space is recursively partitioned into two subspaces,

centred by two pivots p1 and p2 determined using the k-means algorithm with

k=2 [104], to achieve a balanced partitioning with minimum overlap in order to

reduce the computational cost and the complexity of the similarity search process

(Figure 4.26). Despite the efficiency of the BCCF-tree, it presents some inconve-

nient. The k-means algorithm, which is used during the BCCF-tree construction

for overlap decreasing, increased the computational cost and the complexity. In

the BCCF-tree, as well as all the metric space methods, indexes degenerate due

to the continuous growth of the collected IoT data.

119

CHAPTER. 4 Big IoT Data Indexing

Figure 4.26: Partitioning of space with BCCF-tree [5].

4.4 Comparative Analysis of Indexing Methods

4.4.1 Multidimensional space indexing methods

4.4.1.1 Hashing methods

It is a more useful method in the field of multidimensional data indexing because

of its ability to transform a data into a low dimensional element representation

(short code composed of a few bits) [160]. The hashing methods are regrouped

into Locality Sensitive Hashing methods (LSH) and Learning to Hash methods

(L2H). Each method is categorized into centralized or distributed method.

Table 4.1 presents a summary of advantages and disadvantages of LSH methods. In

centralized LSH methods several hash tables are necessary to guarantee the quality

of the search. However, due to the limitation of storage space and processing

capacity of the server, centralized indexing schemes become impractical for big

data . Consequently, several distributed indexing schemes based on peer-to-peer

(p2p) networks are proposed while how to ensure load balancing remains one of

the key issues. In addition to the question of quality guarantee, indexes have to be

built for different radii. Thus, in this case, hundreds or thousands of hash tables

will be built, resulting in high space and high cost search.

120

CHAPTER. 4 Big IoT Data Indexing

Table 4.1: Summary of locality sensitive hashing methods in multidimensional
space.

Category Advantages Disadvantages

M
ul

ti
di

m
en

si
on

al
sp

ac
e

in
de

xi
ng

m
et

ho
ds

H
as

hi
ng

m
et

ho
ds

Lo
ca

lit
y

Se
ns

it
iv

e
H

as
hi

ng
m

et
ho

ds

Centralized
methods

C2LSH
[143]

-Reduce the need to have multiple hash tables
and hence reduce the overall index size
[265].

-The accuracy of C2LSH was still not high [144].
-It is not scalable.

QALSH
[144]

-Increase the precision of C2LSH by adopting a
query-sensitive bucket partition strategy. .

-The guarantee of accuracy during the creation of
new projections is an expensive operation.
-It suffers from high latency [266].

PDA-LSH
[13]

-It can offer efficient support for both
searches and updates.

-The construction of the LMS-tree is very expensive
in terms of compaction.

PM-LSH
[142]

-Using the PM-tree improves query processing time.
-It uses an adjustable confidence interval to better
use distance estimation and provide more
accurate results [265].

-It presents the difficulty of estimating the original
distance between the points after obtaining the results
of a query.
-The high storage space consumed by the hash tables.
-The complexity of the query search needs the
computation of the hash function of a query in
addition to the computation of probability on the
candidate points.

Distributed
methods

Near bucket-LSH
[147]

-It limits the searching process to the compartments
to which the query is mapped.

-Insufficient account for the load balancing distribution
p2p network.

LFFIR
[148] -Scalable content-based image retrieval

-Insufficient account for the load balancing problem,
that is one of the key issues on the overall performance
of the distributed system. [150]

DSLM
[149] -It can achieve high retrieval rates and mobility resilience.

-Insufficient account for the load balancing problem,
that is one of the key issues on the overall performance
of the distributed system .

Balanced and distributed
LSH [150] -It is a balanced distributed indexing scheme. -It is a static distributed indexing scheme.

Table 4.2 presented a summary of advantages and disadvantages of learning to hash

methods (L2H). ODMVH and RDSH are unsupervised methods and the learned

hash codes will suffer from limited semantics and discriminative capability. Fur-

ther, they adopt simple fixed modality weights and binary projection mechanisms,

which cannot adapt the variations of streaming multimedia contents and handle

the modality-missing problems. In the context of the IoT environment, distributed

indexes are very difficult to find the labeling of all different IoT data. Furthermore,

they are not suitable for a large and dynamic database and the learning costs are

very high.

121

CHAPTER. 4 Big IoT Data Indexing

Table 4.2: Summary of learning to hash methods in multidimensional space.

Category Advantages Disadvantages

M
ul

ti
di

m
en

si
on

al
sp

ac
e

in
de

xi
ng

m
et

ho
ds

H
as

hi
ng

m
et

ho
ds

L2
H

m
et

ho
ds

Centralized
methods

ODMVH
[155]

-It can adaptivly increase hash
codes according to dynamic
changes in the image.

-ODMVH has limited performance because
it is unsepervised and has not exploited
any discriminitive semantic information [267].

RDSH
[151]

-It generates a very compact
hash code.

-It is not appropriate for a large and dynamic
database.

Distributed
methods

DISH
[156]

-The requests are distributed in a
balanced way. -High cost time.

SupDISH
[157]

-Effective compact hashing
Less memory consumption
and calculation cost.

-Difficulty in learning the binary codes.

LSH methods operate with the predefined hash functions regardless of the un-

derlying dataset, where L2H learns custom hash functions based on the dataset.

While there is an additional training step necessary, some studies have shown ex-

perimentally that L2H outperforms LSH in terms of query search efficiency [158],

[159],[160]. However, the Hamming distance is a gross indicator of the similarity

between the query and the elements of a bucket as it is discrete and has a lim-

ited number of values. Hamming ranking (HR) may not define a good order for

buckets having the same Hamming distance from the query. As a consequence,

HR generally probes a large unfavorable number of adverse buckets leading to low

efficiency. A solution is to employ a long code so that the Hamming distance can

classify buckets into larger categories. However, the long code has challenges such

as sorting time consumption, high storage demand and low scalability in particular

for large-scale datasets [161].

4.4.1.2 Tree methods

Centralized methods Table 4.3 presents a summary of advantages and disad-

vantages of centralized tree based indexing methods in multidimensional space.

These methods are simple and easy to maintain, However, due to the limitation of

single-machine resources, they can not support the data generated by the devices

122

CHAPTER. 4 Big IoT Data Indexing

of IoT that require high concurrent access to big data, and they are distributed

in different regions. In addition, due the considerable increase of volume of data

generated by IoT devices, all centralized methods suffer from a common drawback,

namely, the degradation of the efficiency of large-scale indexing structures. They

are used for the indexing of a specific kind of data and constructed for a predefined

dimension of data.

All of the discussed drawbacks show that central indexing in the multidimensional

space is not capable of indexing a huge and a growing volume of IoT data.

Distributed methods Table 4.4 presents a summary of advantages and disad-

vantages of distributed tree based indexing methods in multidimensional space.

In distributed indexing methods, because of the data storage architecture, data

management models and data processing methods are very different from the cen-

tralized system. The indexing structure cannot be easily transplanted into the

distributed system. The distributed indexing methods suffer from the location of

the data index, the method of accessing the data index and the method of retriev-

ing the data after indexing. Despite the existence of efficient indexing methods in

high dimension, each distributed method is used for the indexing of a specific type

of data. For example, the S2R-tree [204] is constructed to index, only, spatial-

temporal data and the DAPR-tree [205] is built for, only,indexing geographical

coordinates data.

123

CHAPTER. 4 Big IoT Data Indexing

Table 4.3: Summary of centralized tree indexing methods in multidimensional
space

Category Advantages Disadvantages

M
u
lt

id
im

en
si

on
al

sp
ac

e
in

d
ex

in
g

m
et

h
od

s

T
re

e
m

et
h
od

s

C
e
n
tr

a
li
ze

d
m

e
th

o
d
s

S
p
ac

e
p
ar

ti
ti

on
in

g

Kd-tree
[162] -Balanced hierarchical split. -Costly and arbitrary

-Performance limited by data dimension
KdB-tree

[166]
-Balanced structure
- Efficient search for point queries. -Insufficient search performance

Quad-tree
[168] -Efficient storage and retrieval -It is not balanced

D
at

a
p
ar

ti
ti

on
in

g

R-tree
[12]

-Dynamic and balanced
structure.

-It suffers from the problem of overlap
between the rectangles.
-The time and the complexity of the
computation increase in high
dimension.

R∗-tree
[174]

-Eliminates the overlapping rectangles.
-More efficient than the R-tree. -High complexity.

R∗-tree
[175]

-Eliminates the overlapping rectangles.
-More efficient than the R-tree. -High complexity.

X-tree
[177] -Reduce overlap rate. -It is very complex.

SR-tree
[172] -Reduce overlap rate. -Very costly in insertion

and research.
SUSHI-tree

[173]
-Reduce the dimensionality of
the feature space.

-The quality of clusters is not
guaranteed.

TPR-tree
[178]

-It supports the queries for present
and future positions of moving objects.

-It is very difficult to manage R-tree
with the change of the number of moving objects
and the interval queries
cover the whole tree.

TPR∗-tree
[179]

-It minimizes the bounding
rectangle for reducing query cost[180]. -It cannot handle historical queries.

D-tree
[180]

-Efficiently answers a wide
range of queries.

-Not appropriate for the growing number
of moving objects.

BB-tree
[176] -Balanced and dynamic structure. -Does not support the kNN search.

B-tree
[167]

-Balanced in insertion and deletion.
-Efficient for kNN and range search.

-Large storage space is necessary.
-Maintenance is costly

B+-tree
[182] -Storage is minimized. -High complexity.

STCB-tree
[183]

-Efficient use of storage space.
-Reduce index maintenance.

-It is not scalable to support a very
high rate of updates.

UB-tree
[181] -Efficient processing for spatiotemporal data. -Not suitable for large data.

124

CHAPTER. 4 Big IoT Data Indexing

Table 4.4: Summary of distributed tree indexing methods in multidimensional
space.

Category Advantages Disadvantages

M
ul

ti
di

m
en

si
on

al
sp

ac
e

in
de

xi
ng

m
et

ho
ds

Tr
ee

m
et

ho
ds

D
is

tr
ib

u
te

d
m

et
h
od

s

General indexing framework
[184] -Scalable and flexible index. -It is not well suited for cloud systems [185]

A-tree
[186]

-Scalable indexing scheme.
-Capable of handling both point and range queries.

-Requires large number of servers.
-Limited performance.

EMINC
[185]

-It provides fast query processing.
-Efficient index maintenance -Overlapping in cubes nodes of R-tree.

CG-Index
[189] -Efficient update and query performance. -Supports one-dimensional queries.

RT-can
[191] -Supports point, range and KNN queries search. -Not scalable regarding the dimensionality of the data.

LC-index
[194]

-Dynamic and supports the operations of
insertions and deletions. -High cost of storage.

RT-HCN index
[193]

-Efficient in space and query search.
-Simple and beautiful topology. -Overlapping in R-tree nodes during the publication.

RB-index
[195]

-Efficient and scalable.
-Supports point, range and KNN queries. -Overlapping in R-tree nodes during the publication.

U2-tree}
[197] -Supports point, range and kNN queries search. -High cost in the update and the maintenance of

the distribution index.
CR-index

[198] -Compact indexing scheme. -Able to index data with a unique dimension
[199].

CC Index
[200] -Simple structure

-Requires large storage space.
-Not support updating indexes after the table
has been built.

UQE-Index
[201]

-Support a high insertion rate
-Simultaneously provide an efficient
multidimensional query.

-Supports only range query.

SeaCloudDM
[203] -Able to index continuous IoT data. -Suffers from the latency problem

in the cloud computing.
Multi-attribute index

[202]
-Balanced structure.
-It can support range queries efficiently.

-Only considering numerical data which
is one-dimensional.

S2R-tree
[204]

-Integrates both spatial and
semantic information in the index.

-The conversion of high-dimensional vectors into
a low-dimensional space may lose the origin semantic
of data.

DAPR-tree
[205]

-Balanced index.
-Efficient index for spatial data retrieval.

-It is not dynamic.
-Overload when several requests are received.

Block grid index
[13] -Supports indexing a large-scale moving objects.

-Requires an optimization in the incremental
update of the kNN query search when the objects
are moving.

ITTIS
[14] -Suitable for processing temporal data in real time. -Extensive search time.

DPISCAN
[207] -Efficient index for large-scale moving objects. -No query search method.

Geospatial data indexing}
[209]

-Efficient search for range queries
for geospatial data. -Dimension limited to three.

-Lossless compression Data
[211]

-Enhanced of lossless compression
indexing in IoT.

-Temporal alignments and deduplication IoT
streaming data not addressed.

Textual and spatial objects indexing
[212]

-Minimization of search space by the use of
pruning technique. Difficult update in IoT environment

SSKQR+

[213]
-Efficient index to retrieve the most
relevant data. -Cost of construction and maintenance.

Data lakes approach
[215] -Efficient storage for huge amount of data. -High maintenance cost.

Haystack queries
[215] -Scalability in both computing and storage senses. -Costly data load time.

Hierarchical multidimensional indexing
[216] -Efficient spatial query processing. -Limited dimension

125

CHAPTER. 4 Big IoT Data Indexing

4.4.2 Metric space indexing methods

Centralized methods Table 4.5 presents a summary of advantages and dis-

advantages of centralized tree based indexing methods in metric space. These

methods are based on the successive division of the space into subspaces. This

kind of methods faces the rapid growth of regions and subspaces due to the con-

tinuous growth of data which consequently, leads to the degeneration of the index.

Another issue is the overlapping between these subspaces which is not solved effi-

ciently. As the volume of data generated by IoT devices has increased considerably,

traditional centralized indexing methods became usefulness due to the limitation

of the processing capacity which reduces the overall performance of query-based

search.

Distributed methods Table 4.6 presents a summary of advantages and disad-

vantages of distributed tree based indexing methods in metric space. Distributed

methods in metric space are able to index any type of data. The distribution of

indexes in several local indexes will allow a big data indexing. Nevertheless, the

question remains how to distribute the indexes, and how to retrieve the data in

these distributed indexes.

126

CHAPTER. 4 Big IoT Data Indexing

Table 4.5: Summary of centralized tree indexing methods in metric space.

Category Advantages Disadvantages

M
et

ric
sp

ac
e

in
de

xi
ng

m
et

ho
ds

C
en

tr
al

iz
ed

m
et

ho
ds

Sp
ac

e
pa

rt
iti

on
in

g
m

et
ho

ds

H
yp

er
pl

an
e

pa
rt

iti
on

in
g

BS-tree
[217]

-Simple partitioning.
-Reduce overlap rate.

-Static structure.
-High computational costs.
-High cost search.
-Support only range search.

MBS-tree
[218]

-Reduce the cost of search compared
with the BS-tree.

-Static structure.
-Support only range search.

V-tree
[219]

-Reduce overlap rate.
-Simple implementation

-Static structure.
-Unbalanced structure.
-Reinsertion objects is largely costly.

GH-tree
[220]

-Reduce overlap rate.
-Simple implementation

-Static structure.
-High cost search.

GNAT
[222] -No overlapping. -Static structure.

-High computational costs.
EGNAT

[223] -Needs lower CPU time than the GNAT tree. -Difficulty in balancing the index.

VD-tree
[225]

-Dynamic structure.
-Reduce overlapping rate. -Unbalanced structure.

Ba
ll

pa
rt

iti
on

in
g

VP-tree
[229] -Simple implementation. -High cost in terms of computed distance and time.

mVP-tree
[231] -Reduces research costs- -Static structure.

-Support only range search.
MM-tree

[232]
-No overlapping regions.
-Dynamic structure. -Unbalanced structure.

Onion-tree
[233]

-Improved space partitioning as compared to MM-tree.
-Dynamic structure. -Insertion of objects creates a semi-balance.

IM-tree
[221] -Efficient when comparing to MM-tree and Slim-tree. -Index degeneration in large-scale data.

XM-tree
[234] -Fast kNN search. -High memory requirements.

NOBH-tree
[235] -No overlapping of the divided data space -High cost of insertion and search.

M
ap

pi
ng

pi
vo

ts
pa

rt
iti

on
in

g D-index
[236]

-Reduction of distance calculations.
-No overlapping of the divided data space. -The mapped of points deformed the distances.

eD-index
[238] -Suitable for similarity self join. -Efficient for small query radii only.

-The mapped of points deformed the distances.

iDistance
[239]

-Reduction of distance calculations.
-No overlapping of the divided data space.

-kNN search performed using one-dimension
range search.
-The mapped of points deformed the distances.

M-index
[240]

-Reduction of distance calculations.
-No overlapping of the divided data space.
-Efficient search in comparison with the iDistance.

-The mapped of points deformed the distances.

SPB-tree
[241]

-Reduce the cost in terms of storage
construction and search. -The mapped of points deformed the distances.

D
at

a
pa

rt
iti

on
in

g

M-tree
[243] -Dynamic and balanced structure. -Not scalable for high volumes of data.

-High cost search.
Slim-tree

[226]
-Dynamic structure.
-Reduce overlap rate. -Degradation performance in processing a query .

DBM-tree
[245]

-Dynamic structure.
-Reduce overlap rate. -Expensive construction.

DBM∗-tree
[246]

-Reduce the cost of construction.
-Dynamic structure. -Needs a high memory space.

MX-tree
[247]

-Low cost of index.
-Dynamic structure. -High cost of search.

PM-tree
[248].

-Dynamic structure.
-Reduce the distance calculations.
-Compact indexes increasing the performance
of the similarity search.

-High computational costs of construction.

Super M-Tree
[249] -Able to address approximate requests for subsequences. -High computational costs of construction.

Hollow-tree
[250] -Able of handling missing data. -Not support high volumes of data.

Pr
e-

co
m

pu
te

d
di

st
an

ce
s

AESA
[251] -Simple implementation.

-Static structure.
-High computational costs of construction.
-High cost of storage.
–Not support large data sets.

LAESA
[253] -Reduce the construction cost compared with EASA.-

-Static structure.
–Not support large data sets.
-High cost of storage.

I-LAESA
[256]

-Reduce the distance calculations in query search
compared with LAESA.

-High cost of storage.
–Not support large data sets.

127

CHAPTER. 4 Big IoT Data Indexing

Table 4.6: Summary of distributed tree based indexing methods in metric space.

Category Advantages Disadvantages

M
et

ri
c

sp
ac

e
in

de
xi

ng
m

et
ho

ds

D
is

tr
ib

u
te

d
m

et
h
od

s

GHT∗

[258]
-Parallelism speed up the search.
-No overlapping data distribution between servers.

-Support only range search.
-Unstable connections between nodes of p2p network

VP-tree
[258]

-Parallelism speed up the search.
-No overlapping data distribution between servers.

-Support only range search.
-Unstable connections between nodes of p2p network

M-Chord
[259]

-Effective split of local metric based indexes.
-Efficient similarity search.

-kNN and range query search performed using
one-dimension.
-Unstable connections between nodes of p2p network.

M-CAN
[261] -Effective split of local metric based indexes

-Similarity query search performed using one-dimension.
-Unstable connections between nodes of p2p network.
-Support only range search.

GHB-tree
[262]

-Balanced structure.
-No overlapping data distribution between
nodes of p2p network.

-Difficult to balance the index.

ADMS
[263] -Balanced distributed system. -Risk of network saturation during message exchange.

Distributed M-tree
[264] -Support high volumes of data. -Inefficient kNN search.

DM-index
[6].

-Efficient index for discovery of services.
-Adaptive deployment models for fog nodes. -Unbalanced index in terms of load of fog layer nodes.

BCCF-tree
[5]

-Efficient kNN search.
-Balanced partitioning of the data.

-Costly building process.
-Degradation in large scale.

4.5 Conclusion

In this chapter, a review of the literature on big IoT data indexing is presented. A

new taxonomy of indexing techniques, in both multidimensional and metric spaces,

is proposed basing on their grouping into centralized and distributed methods. For

the whole indexing methods, in both multidimensional pace and metric space, a

comparative analysis was done by pointing out the advantages and the disadvan-

tages of each index. Indexing methods in metric space present better performance

compared with the multidimensional space which was awaited since, in metric

space, data objects are defined by distances. In the other hand, the few dis-

tributed indexing methods in metric space are more efficient than the centralized

indexing methods in the space. In the next part, we will propose some distributed

indexing methods developed, in this thesis work, in metric space in order to solve

some issues raised previously. The similarity query search performance in these

indexes will be tested using the kNN search method.

128

Part II

Propositions

129

5 Parallel Construction of B3CF-trees

5.1 Introduction

After studying the state of the art of centralized indexes in the multidimensional

space or in the metric space, we find that they are limited due to the fact that

they suffer from a common drawback of degradation of efficiency in large scale,

which makes these methods inefficient for indexing IoT data. This inefficiency

also leads to the need for index distribution for ensuring the rapidity of the query

search process. The majority of distributed indexes in multidimensional and metric

space stored in the cloud [194], [193], [195], [197], which posed various challenges.

High or unpredictable latency due the long distances between users and the cloud.

High uplink bandwidth requirements, gateways that do not have the bandwidth

capacity to upload certain types of sensors data to the cloud will not be able to

use the cloud-based storage and processing approach. No in-network filtering or

aggregation. Some applications cover a large geographical space, whereas only

an aggregate value of the sensors is actually important. Uninterrupted internet

connection required [22]. Indexes in the multidimensional space are more robust

due to their strong dependency on type or, more precisely, on their geometric

properties. This feature makes these indexes only specific for a certain data type

which implies that indexing the various types of IoT data is very difficult [39].

130

CHAPTER. 5 Parallel Construction of B3CF-trees

To solve these challenges, we propose to relocate the indexing process from the

cloud to the fog nodes in order to bring the data as close as possible to the indexing

structure and therefore, considerably reduce network congestion. In addition, each

fog node generates its own indexing structure, which not only allows parallelism

during the construction of trees, but also parallelism in the similarity query search

process through the simultaneous launch of the same query on all fog nodes. In

each fog node, a clustering method is used as a pre-indexing process. The use of the

density-based spatial clustering of applications with noise (DBSCAN) algorithm

allows data to be partitioned into homogeneous groups which will be indexed in

parallel. This process promotes the creation of a balanced trees with a minimum

degree of overlap between the leaves of each tree. Indeed, DBSCAN is a density-

based clustering method that stands out for its ability to automatically create

clusters with almost zero inter-class similarity. To ovoid the limitations of indexing

structures in multidimensional space we choose the metric space. The metric

space approach has been found to be very important in building effective indexes

for similarity searching. Our index structure is implemented in the metric space

because it seems to be the right compromise since, in this space, only distances

between data are used regardless of their types and dimensions. In additional,

we used tree indexing structures, that is dynamic structures with data changes.

The complexity of the insertion and search in tree structure is logarithmic. This

means that the search time is reduced logarithmically depending on the number

of indexed objects.

In this chapter, we propose a new system for indexing and retrieving data in an

IoT environment. The so called Binary tree based on containers at the cloud-

clusters fog computing level (B3CF) allows dealing with the index degradation

and network congestion while ensuring minimal kNN search time with optimal

results quality by the introduction of clustering using the DBSCAN algorithm as

131

CHAPTER. 5 Parallel Construction of B3CF-trees

a step before indexing. The clustering process, in its turn, allows the introduction

parallelism for the indexing of separated clusters and also in the similarity query

search using the kNN search method. The proposed approach will be presented in

detail followed by the simulation and results of the indexes construction in terms of

the number of calculated distances, the number of calculated comparison, the time

of indexes construction and the indexes quality. The parallel kNN similarity query

search will be also tested by the number of calculated comparisons, the number

of calculated distances, the time of search and the number of the visited leaves.

The examination of the performance of this proposed index will be performed

by comparison with some existing indexes namely BCCF-tree [5], IWC-tree [5],

MX-tree [247] and BB-tree [176],[201].

5.2 Proposed Approach

Similarity search queries, in an IoT environment, is very complex due to the ex-

ponential increase in data, which needs to be organized. In this approach, the

collected data is grouped into clusters, using a clustering algorithm, before their

indexing in parallel. Parallelism is an efficient tool to speed up the index con-

struction time and also the search algorithm. Like the BCCF-tree [5], the system

architecture consists of three layers: the IoT sensor layer (or terminal layer), the

fog layer, and the cloud layer (Figure 5.1). The terminal layer sends the data

generated by the interconnected devices to the fog layer. The fog nodes are close

to the terminal devices and have the ability to compute and store the data [268].

In this approach, the fog layer is divided into two levels (Figure 5.1). In the first

fog level, the data sent by the terminal layer is collected and aggregated. In the

second fog level, the data from each cluster is indexed and trees are constructed.

The leaves of the nodes in the constructed tree are stored in the cloud layer.

132

CHAPTER. 5 Parallel Construction of B3CF-trees

Te
rm

in
al

 la
ye

r
Fo

gs
 la

ye
r

Cl
ou

d
la

ye
r

IoT data
generation

Data collection &
Clustering

Data Indexing

Data storage &
Query search

Le
ve

l
1

Le
ve

l
2

Figure 5.1: Cloud-fog computing architecture.

5.2.1 Clustering fog level

The target of the first fog level is to segment the data gathered from IoT devices.

This process can help to construct parallel trees for each cluster and speed up

the research since each tree contains only similar objects represented by the root.

Indeed, it is not required to go through the entire tree to get a response to the

query; in addition, it makes it possible to launch the query on all fog trees at

the same time. So to do this, the DBSACN (Density Based Spatial Clustering

of Applications with Noise) algorithm (Algorithm 1) was chosen to segment data

into clusters. The DBSCAN is a density-based clustering algorithm designed to

discover clusters of arbitrary shapes. The main idea of DBSCAN is that, for

each object in a cluster, the neighborhood of a given radius must have at least a

minimum number of objects.

133

CHAPTER. 5 Parallel Construction of B3CF-trees

Table 5.1: Definitions of variables used in algorithms.

Symbols Definitions
O Set of objects O = {o1, ..., ons}
no Number of objects in O
C Set of Clusters C = {C1, ..., Cnc}
nc Number of cluster
Cc Center of cluster
d(a, b) Distance function between ob-

jects a and b
noc Number of objects in each cluster

In our context, DBSCAN seems to be the better choice since the latter can de-

termine the number of clusters automatically, whereas other clustering methods,

such as k-means and spectral clustering, require as input the number of clusters,

which is not always easy to determine when dealing with metric and multimodal

data.

The basic version of DBSCAN only allows to group similar elements without de-

termining a representative for each cluster. This missing information is very im-

portant whether in the phase of construction of the tree or in the phase of finding

an element in the tree. Indeed, the representative of a cluster is an optimal choice

as the root of the tree knowing that a good root allows optimizing the construction

and the research. In addition, the representative makes it possible to reduce the

number of comparisons calculated when one wants to select the tree concerned

by the search. In practice, the attribution of a class to new data, in the absence

of the representant, is carried out by calculating the distance between the new

objects and all the elements of the cluster. Creating a representant reduces the

number of computed comparisons for each cluster to one. For this, a new version

of DBSCAN is proposed (Algorithm 1) to take into account the previously cited

requirements. For a better reading of the algorithms, the definitions of all variables

are grouped in Table 5.1. In Algorithm 1, clustering of the dataset O, consisting of

134

CHAPTER. 5 Parallel Construction of B3CF-trees

no objects o, into nc clusters C with centersCc is performed using DBSCAN with

chosen parameters eps and Minpts.

DBSCAN

...…

Cluster 1 Cluster 2 Cluster 3 Cluster n

Co
lle

ct
ed

Io
T

da
ta

P2P1

P15P12 P5P16

P18P4 P11P13P10P6

C
lu

st
er

in
g

Fo
g

le
ve

l
In

d
ex

in
g

Fo
g

le
ve

l B3CF-tree B3CF-tree B3CF-treeA zoom of the B3CF-tree

CloudData partitioning

Figure 5.2: B3CF-tree construction in the cloud-fog computing level.

135

CHAPTER. 5 Parallel Construction of B3CF-trees

Algorithm 1 DBSCAN modified with cluster centers.
Require: O = {o1, ..., ons}, eps, Minpts
Ensure: C,Cc

ClusterId = nextId(NOISE)
for i ∈ O.size do

Point = o.get(i)
if Point.ClId = UNCLASSIFIED then

if ExpandCluster(O , Point, ClusterId, Eps, MinPts) then
ClusterId = nextId(ClusterId)

end if
end if

end for

for i ∈ {1..nc} do
calcul Cci

end for

5.2.2 Indexing fog level

After clustering has been done at the first level of the fog, each cluster will be

indexed in parallel. The fundamental objective is to allow the construction and

interrogation of indexes for clusters of data independently and simultaneously.

The aim is to create a dense cluster of objects with small size. To improve the

execution time on search algorithms and construction algorithms, compared to our

last proposal [5] and also the last existing technique. The aim of the first fog level

is to segment the data gathered from IoT devices. This process assists to construct

parallel trees for each cluster and speed up the research since each tree contains

only similar objects. which limits the volume space, excludes the empty sets; the

separable partitions, does not contain objects and creates eXtended regions that

will be inserted into a new index. This problem was mentioned by the authors

in the field (cruse of dimensionality). The distribution of data has to be almost

balanced between all fog nodes. The B3CF-tree (Figure 5.2), a Binary tree based

on Containers at the Cloud-Clusters Fog computing level, is strongly inspired by

136

CHAPTER. 5 Parallel Construction of B3CF-trees

the BCCF-tree [5] and GHB-tree [262] that it tries to improve the performance

of the construction and search algorithms of the latter. Space partitioning is a

technique that leads to simpler data structures - and thus algorithms. Moreover,

the problem of the exponential increase of volumes in large spaces pleads in favor

of techniques allowing to reduce or at least to limit the volumes, even to control

their occupation, and this is guaranteed by the clustering algorithm DBSCAN. It

is based on a partitioning of each cluster, in the metric space, into two regions

using two balls at a time.

For the balls construction, we choose two objects and consider them as two pivots

(Figure. 5.2). The distance between these two pivots is also the radius of the two

balls.

The B3CF-tree nodes - or only N - is defined by:

• L leaf node a set of indexed objects: EL ⊆ E where |EL| ⩽ cmax.

• N Internal node is a septuple: (p1, p2, r, r1, r2, N1, N2) ∈ O2 × R3 ×N2.

where:

– r = d(p1, p2) helps to define two balls B1 and B2. According to figure

5.3: B1(p1, r) and B2(p2, r), centered on p1 and p2 respectively and

having a common radius value, large enough for the two balls to have

a nonempty intersection.

– r1 and r2 are the distances to the farthest object in the subtree rooted

at that node N with respect to p1 and p2, respectively.

– N1 and N2 are two subtrees(Figure5.3), such that: N1 = {o ∈ N :

d(p1, o) <= d(p2, o)} and N2 = {o ∈ N : d(p2, o) < d(p1, o)}.

137

CHAPTER. 5 Parallel Construction of B3CF-trees

P1

P2

r1

r2

r

Partition 1

Partition 2

P5

P8

P6

P3

P7

P4

(H)

Figure 5.3: Partitioning the space in the B3CF-tree.

5.2.2.1 B3CF-tree build

The construction of the B3CF tree is an incremental process. Algorithm 2 presents

a formal description of the parallel index construction process.

Algorithm 2 Parallel B3CF-tree build (Ci, nco)

Build B3CF-tree (∈ P()) ∈ N

With:
(p1, p2)= The two farthest pivots

∆
=

⊥ if S=∅
(e,⊥,⊥,⊥) if S={e} p1, p2

BuildB3CF ({e ∈ S : d(p1, e) ⩽ d(p2, e)} \ {p1})
BuildB3CF ({e ∈ S : d(p2, e) < d(p1, e)} \ {p2})

 else

The insertion of objects is done from top to bottom (Algorithm 3). Initially, the

tree is empty (a leaf encompasses a cluster that contains a set of objects). The

farthest two-pivot search algorithm is used for all objects. We have considered

putting in place strategies to try to balance the tree, such as choosing two elements

furthest apart from each other. After the container will be divided into two non-

overlapping subsets so that each element of the container belongs to its nearest

pivot. Then, this leaf is replaced by an internal node with p1 and p2, and two leaf

138

CHAPTER. 5 Parallel Construction of B3CF-trees

nodes are created (Figure 5.3).

The data collected at this level of the fog was aggregated into clusters, using the

clustering algorithm DBSCAN, before being indexed in parallel with B3CF-tree.

The parallelism is an efficient tool to speed up the index construction time as well

as the search algorithm.

Algorithm 3 Insertion in B3CF-tree

Insert-B3CF-tree

o ∈ O,
N ∈ N,
d ∈ O× O→ R+,
cmax ∈ N∗,

 ∈ N

∆
=

(o,⊥,⊥) if N = ⊥
(p1, o,⊥,⊥) if N = (p1,⊥,⊥,⊥)
(p1, p2, Insert(o, d, cmax, N1), N2) if N = (p1, p2, r, r1, r2, N1, N2)

∧d(p1, o) ≤ r ∧ d(p2, o) ≤ r
(p1, p2, N1, Insert(o, d, cmax, N2)) if N = (p1, p2, r, r1, r2, N1, N2)

∧d(p1, o) ≤ r ∧ d(p2, o) > r

The complexity of the B3CF-tree construction is calculated as follows: using the

DBSCAN algorithm on the dataset of size n results in clusters of different sizes

noc < n. Since the index construction is performed in parallel using Algorithm 2,

the complexity can be considered as O(m. logm) where m is the average size of

the resulting clusters. Moreover, the complexity of DBSCAN is O(n.d) where d is

the average number of neighbors while the original DBSCAN had O(n) memory

complexity [119],[269]. Thus the overall complexity of our approach is O(n.d) +

O(m. logm). Similar to the BCCF-tree [39], the construction follows a balanced

hierarchical partitioning of a set of data clusters. The volume of regions becomes

smaller, which automatically leads to a lower overlap rate, which in turn will

improve the performance of the search algorithms.

139

CHAPTER. 5 Parallel Construction of B3CF-trees

5.2.2.2 Parallel kNN seach in B3CF-tree

Similar to the indexing process, parallelism is also used in this work in the similarity

search query process to minimize retrieve time. The formal description of the kNN

search in the B3CF-tree is summarized in Algorithm 4. The aim of the k-nearest

neighbor search is to find the set A of objects closest to a query point q. The kNN

search algorithm starts with a query radius rq initialized to +∞ which should

lead to scanning the dataset and then decreases by traversing each tree which

corresponds to the distance to the ke object in the ordered list A. Comparing

the distances d1 and d2 between the query point q and the two pivotsp1 and p2

respectively with rq indicates the descent of the query point in the index. The leaf

nodes contain a subset of the indexed data with a maximum cardinal cmax. To

find the k nearest neighbors of a leaf, we simply sort the indexed data according

to their increasing distances to the query q. As a result of the search, the first k

sorted objects are returned.

Because of the parallelisation of the kNN search in all B3CF-trees, the complexity

of the kNN search could be reduced to the complexity of search in only one B3CF-

tree and it is in the order of O(α.
√
m. log(k)) + log(m)/(α.k.

√
m) where m =

max(noc) is the maximum size of the resulting DBSCAN clusters and α = novl/
√
m

is the ratio of the number of objects in all visited leaves novl to the maximum

cardinal cmax =
√
m. The first term O(α.

√
m. log(k)) is the order of the complexity

of the computations performed in the leaf while the second term log(m)/(α.k.
√
m)

estimates the complexity of the computations performed when traversing the index

from the vertex.

Our proposed approach may have an important impact on IoT data processing

due to the closeness of the fog layer from the end user. Any set of heterogeneous

IoT data will be able to be indexed using our proposed method because first,

140

CHAPTER. 5 Parallel Construction of B3CF-trees

it is developed in metric space and second, the use of DBSCAN separates data

into clusters of homogenous contents that will be indexed in parallel. The use of

parallelism during the data indexing and kNN query search, will speed up both

the indexes construction and the similarity search process.

Algorithm 4 Search-kNN in B3CF-tree

kNN-B3CF

N ∈ N,
q ∈ Rn,
k ∈ N∗,
d : O× O→ R+,
rq ∈ R+ = +∞,
A ∈ (R+ × O)N = ∅

 ∈ (R+ × O)N

with :
• A = ((d1, o1), (d2, o2), . . . , (dk′ , ok′)) ;

• d1 = d(p1, q) ;

• d2 = d(p2, q) ;

• C1 = B(q, rq) ∩B(p1, r) ̸= ∅, for the intersection ;

• C2 = B(q, rq) ∩ B(p1, r) ̸= ∅ ∧ B(q, rq) ∩ B(p2, r) ̸= ∅, for the partial ball
centered on p1 ;

• C3 = B(q, rq) ∩ B(p1, r) ̸= ∅ ∧ B(q, rq) ∩ B(p2, r) ̸= ∅, for the partial ball
centered on p2 ;

– A0 = A ;

– C0 = true ;

– rq0 = min{rq, dk′} if k′ = k else rq ;

– Ai = kNN-B3CF(Ni, q, k, rqi−1
, Ai−1) if Ci else Ai−1 ;

– rqi = min{rqi−1
, dk} if |Ai−1| = k ∧ Ai−1 = ((d1, o1), . . . , (dk, ok)) else

rqi−1
.

∆
=

{
A, k-sort(A ∪ {(d(o, q), o) : o ∈ L}) if N = L
A2 if N = (p1, p2, r, N1, N2)

141

CHAPTER. 5 Parallel Construction of B3CF-trees

5.3 Simulation and Results

To test and compare the effectiveness of the proposed approach many experiments

were performed on five real data sets with different sizes and dimensions (Table

5.2). The size, or the number of vectors, represents the number of lines in the

database while the dimension represents the number of values in each line (Vector

coordinates). The databases have been carefully selected from among others to

bring together most of the problems encountered in indexing IoT data.

Table 5.2: Characteristics of the selected datasets for the index evaluation.

Dataset Size (Vectors) Dimension
Geographical coordinates 988 2
GPS trajectory 18107 3
Tracking a moving object dataset 62702 20
WARD (Wearable Action Recognition Database) 1000000 5
Smart Home data 5000000 4

1. Geographical coordinate database: a real dataset of 988 2D vectors, which

have a low dimensional. It contains BD-L-TC topographic data of selected

locations and places [270].

2. GPS trajectory: a dataset of 18107 3D vectors, containing transport trajec-

tories in the northeast of Brazil [271].

3. Tracking of a moving object: a real dataset of 62702 20D vectors. It repre-

sents the results of a random simulation of tracking a moving object using

wireless cameras .

4. WARD (Wearable Action Recognition Database) [272]: a real dataset of

1000000 5D vectors. It is a reference database for human activity recognition

using wearable sensors [273].

5. Smart Home data [274]: a real dataset of 5000000 4D vectors. The dataset

142

CHAPTER. 5 Parallel Construction of B3CF-trees

is composed of IoT sensors based on the MQTT communication protocol

where the scenario is related to a smart home environment [275].

The experiments were performed using the Python programming language in-

stalled on an Intel®CoreTM i7-8550UCPU, 1.80 GHz*8 processor with a 64-bit

Linux operating system (Ubuntu). The parameters of the DBSCAN algorithm

Eps and Minpts used for each dataset are regrouped in Table 5.3. In the imple-

mentation, the used machine is considered as a fog in which, the received data is

processed following two steps.

Table 5.3: Parameter values of the DBSCAN algorithm.

Dataset Eps Minpts
Geographical coordinates 0.062 38
GPS trajectory 70 3
Tracking a moving object dataset 248 250
WARD (Wearable Action Recognition Database) 91 23
Smart home data 170 30

In the first step, for data indexing, two codes were implemented: DBSCAN clus-

tering (algorithm 1) and the parallel build of the B3CF-trees using threads (algo-

rithms 2 and 3). In the second step, the parallel kNN query search is implemented,

in threads, using the code of algorithm 4. The effectiveness of the proposed B3CF-

tree construction and the query response are tested by comparing our obtained

results to those obtained by the following index structures:

• BCCF-tree (Binary tree based on containers at the cloud-fog computing

level) [5]: The index B3CF-tree proposed in this study represents an im-

provement of this index since there is no overlapping of objects when using

DBSCAN algorithm for clustering in the metric space.

• IWC-tree (Indexing tree without containers) [5]: The comparison of our

143

CHAPTER. 5 Parallel Construction of B3CF-trees

results with those of this index can show the effectiveness of using containers

in binary trees.

• MX-tree [247]: The comparison of our results with those of this index can

highlight the difference between hyper-plane partitioning and ball partition-

ing in the metric space.

• BB-tree (Bubble Buckets tree) [176],[201]: This index is constructed in the

multidimensional space, a comparison with our proposed index shows the

difference between the metric space and the multidimensional space.

5.3.1 Evaluation and comparison of the index construction

The evaluation of the construction index of the B3CF-tree is based on the number

of computed distances, the number of comparisons, and the construction time

(Figure 5.4) where the size of the containers is set by cmax =
√
n. From the

obtained results presented in Table 5.4, One can see that the IWC-tree has no

results for Smart Home data which reflects the degradation of this index when

the data sizes are larger than five million. This is due to the fact that the IWC-

tree proceeds with the whole dataset, unlike the B3CF-tree and BCCF-tree which

proceed with partial data using means of containers. In the BB-tree index, the

balls also act as containers. In the MX-tree, each node has a maximum capacity

beyond which it will be divided into two nodes.

5.3.1.1 Number of calculated distances

As shown in Figure 5.4, the number of distances computed during the construction

of all index structures changes with the size and dimension of the data sets. The

number of distances computed when constructing the proposed B3CF-tree (taken

as the sum of number of distances for all clusters) is less than that of the BCCF

144

CHAPTER. 5 Parallel Construction of B3CF-trees

B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree

0

2

4

N
um

be
r

of
 d

is
ta

nc
es

x1
07

x1
08

x1
04

Geographical Coordinates

0

2

4

GPS Trajectory

0

2

4

Tracking dataset

0

2

4

6

x1
07

WARD

0

2

4

6
x1

09

Smart Home data

B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree

0

2

4

N
um

be
r

of
 c

om
pa

ris
on

s

x1
07

x1
04 Geographical Coordinates

0
2
4
6
8

GPS Trajectory

0

1

2

x1
07

Tracking dataset

0
2
4
6
8

x1
09

x1
08

WARD

0

2

4

6

8

Smart Home data

B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree

0

2

4

6

x1
02

x1
0-2

Geographical Coordinates

0

2

4

GPS Trajectory

0

2

4

6

x1
0

Tracking dataset

0

2

4

x1
03

WARD

0

2

4

C
on

st
ru

ct
io

n
tim

e
(s

)

x1
04

Smart Home data

Figure 5.4: Number of distances, number of comparisons and construction time of
B3CF-tree, BCCF-tree, BB-tree, MX-tree and IWC-tree.

tree, the MX tree, and the IWC tree. In the BCCF-tree, k-means is used for the

determination of the two pivots during the index construction and this is what

increases the number of distances. In the proposed B3CF-tree, the two pivots are

always chosen as the most distant objects. The number of distances calculated

during the construction of the B3CF-tree is good compared with other methods

except for BB tree because the BB-tree is constructed in the multidimensional

space where the data are directly partitioned without calculating distances. The

construction of the B3CF-tree is very efficient thanks to DBSCAN algorithm which

allows a good data grouping. Indeed, the clusters have the same density and the

objects are similar.

5.3.1.2 Number of comparisons

The number of comparisons calculated when constructing the B3CF-tree (also

taken as the sum of number of comparisons for the resulting clusters) is lower than

that of the other index structures (Figure 5.4) regardless of the space in which they

are constructed. This is due to the use of the DBSCAN algorithm for clustering

145

CHAPTER. 5 Parallel Construction of B3CF-trees

which divides the dataset into clusters of similar (or nearest) objects. For BCCF-

tree, the number of comparisons increases due to the use of the whole dataset to

build the tree while the BB-tree scored the greatest number of comparisons despite

the low number of calculated distances. This is directly related to the construction

method which is based on putting the objects to the left or to the right of an axis

determined from the medium calculations.

5.3.1.3 Construction time

On Figure 5.4, the construction time of the B3CF-tree (considered as the average

time for indexing the resulting cluster data) is less than that of the BCCF-tree

and the IWC-tree and close to that of the BB-tree and the MX-tree. For example,

the ratio of the build time of the B3CF-tree to that of the BCCF-tree is 0.02% for

the geographic coordinate data, 0.8% for the GPS trajectory data, 1.8% for the

tracking dataset, 0.47% for the WARD database, and 0.012% for the smart house

data. The difference in construction time in the BCCF-tree may be due to the

increase in the number of distances, likely related to the use of k-means for pivot

determination. For the IWC-tree, since it does not use containers, the distance

between objects in all datasets is calculated. Moreover, the parallel construction

of indexes from DBSCAN clusters implies an efficient reduction in construction

time because the overall size of the dataset is divided over DBSCAN clusters. The

indexes construction results confirmed the performance of our proposed approach

after comparison with its competitors. Indeed, regrouping the dataset into clusters

allows the use of parallelism during the indexing process. In addition, for each

B3CF-tree, the choice of pivots as the farthest objects during the partition of data

in containers is a simple process but efficient if compared with the k-means method

(used in BCCF-tree). The clustering using DBSCAN algorithm before indexing

the data , the parallel indexing and the simple manner for the choice of pivots in

146

C
H

A
P

T
E

R
.5

P
arallelC

onstruction
ofB

3C
F
-trees

Table 5.4: Values of the number of calculated distances, the number of comparisons and the construction time.

Number of distances Number of comparisons Construction time(s)
B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree

Geographical
coordinates 4.93E+03 1.64E+04 2.00E+01 6.86E+03 1.68E+04 2.46E+03 8.22E+03 2.95E+04 5.46E+03 8.39E+03 4.00E-04 1.66 1.43 3.27 2.33E+03

GPS
Trajectory 2.39E+06 4.3E+06 2.60E+01 1.46E+06 1.63E+08 1.19E+06 2.46E+06 2.39E+06 1.43E+06 8.16E+07 6.19E-02 7.65 38.80 1.32E+03 2.05E+04

Tracking
Database 3.96E+05 1.64E+06 1.80E+01 1.35E+06 1.94E+07 1.98E+05 8.20E+05 1.30E+07 1.24E+06 9.70E+06 9.20E-03 0.50 4.27 1.06E+02 1.75E+03

WARD 1.40E+07 6.47E+07 2.60E+01 1.91E+07 5.13E+07 7.00E+06 3.23E+07 7.57E+08 1.76E+07 2.56E+07 7.80E-03 1.67 4.20 26.70 2.70E+03
Smart

Home data 1.30E+09 6.19E+09 5.38E+02 1.92E+09 – 6.51E+08 3.10E+09 7.01E+09 1.91E+09 – 2.09E-02 1.80E+02 57.10 67.10 –

147

CHAPTER. 5 Parallel Construction of B3CF-trees

the containers contributed efficiently in the reduction of the construction cost.

5.3.2 Evaluation and comparison of the constructed index

quality

To check the quality of the constructed B3CF tree, the number of nodes per level,

the distribution of data in the leaf, the number of internal nodes, the number

of leaves, and the tree height features were examined compared to the BCCF-

tree, BB-tree, MX-tree and IWC-tree. Table 5.5 lists the values of the last three

features.

5.3.2.1 Number of nodes per level

The number of nodes per level varies according to the dataset as shown in Figure

5.5. It is constant for the GPS trajectory and Smart Home datasets and varies from

level to level for the other datasets. The number of nodes per level is plotted for

three clusters (result of the DBSCAN algorithm) in the Geographic Coordinates

and GPS trajectory datasets. However, for the WARD and Smart Home datasets,

the DBSCAN algorithm gave more than three clusters and therefore only three

clusters were chosen to present the results. According to Figure 5.5, the proposed

B3CF-tree index structure is efficient for computing very large data.

5.3.2.2 Data distribution in leaves

Figure 5.6 shows the data distribution in the leaves. The B3CF-trees in each

cluster of the Tracking and WARD datasets are balanced. This is because the

data for both datasets are well distributed between the left and right sides of each

tree. For the Geographic Coordinates dataset, only the index of the first cluster

is balanced. Our index is very efficient, and this is because the space is divided

148

CHAPTER. 5 Parallel Construction of B3CF-trees

1 2 3 4 5 6 7

0

5

10

15

20

25
Geographical Coordinates

N

um
be

r
of

 n
od

es

Level

 Cluster 01
 Cluster 02
 Cluster 03

1 10 100

1,0

1,2

1,4

1,6

1,8

2,0
GPS Trajectory

N
um

be
r

of
 n

od
es

Level

 Cluster 01
 Cluster 02
 Cluster 03

0 2 4 6 8 10 12 14

0

10

20

30

40

50 Tracking data

N
um

be
r

of
 n

od
es

Level

 Chosen cluster 01
 Chosen cluster 02
 Chosen cluster 03

0 5 10 15 20 25 30

0

50

100

150

200

250

300 WARD

N
um

be
r

of
 n

od
es

Level

 Chosen cluster 01
 Chosen cluster 02
 Chosen cluster 03

0 500 1000 1500 2000 2500

1,0

1,2

1,4

1,6

1,8

2,0
Smart Home data

N
um

be
r

of
 n

od
es

Level

 Chosen cluster 1
 Chosen cluster 2
 Chosen cluster 3

Figure 5.5: Number of nodes per level in the B3CF-tree.

into two sub-parts that do not intersect. This method ensures that the nodes do

not overlap. In addition to this, the application of DBSCAN to the first level data

makes the data in each group similar and close to each other, which makes the

tree composition balanced.

5.3.2.3 Number of internal nodes

The number of internal nodes in the B3CF-tree is lower than that of other index

structures (Figure 5.7). The number of internal nodes in the IWC-tree structure

is high because it does not use containers that control the partitioning of data.

5.3.2.4 Number of leaf nodes

The same observations can be made for the number of leaf nodes with respect to

the relationship between it and the number of internal nodes (Figure 5.7). The

number of leaf nodes in the B3CF-tree is lower than in the other structures because

the use of the DBSCAN algorithm implies the grouping of the closest objects in

149

CHAPTER. 5 Parallel Construction of B3CF-trees

Cluster 01 Cluster 02 Cluster 03

10

15

20

25

30

35 Geographical Coordinates

M
ea

n
nu

m
be

r
of

 o
bj

ec
ts

/le
af

 Left
 Right

Cluster 01 Cluster 02 Cluster 03
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120 GPS Trajectory

M
ea

n
nu

m
be

r
of

 o
bj

ec
ts

/le
af

 Left
 Right

Chosen cluster 01 Chosen cluster 02 Chosen cluster 03

50

100

150

200

250

300
Tracking data

M
ea

n
nu

m
be

r
of

 o
bj

ec
ts

/le
af

 Left
 Right

Chosen cluster 01 Chosen cluster 02 Chosen cluster 03
0

200

400

600

800

1000
WARD

M
ea

n
nu

m
be

r
of

 o
bj

ec
ts

/le
af

 Left
 Right

Chosen cluster 01 Chosen cluster 02 Chosen cluster 03

200

400

600

800

1000 Smart Home data

M

ea
n

nu
m

be
r

of
 o

bj
ec

ts
/le

af

 Left
 Right

Figure 5.6: Distribution of data in the B3CF-tree.

the same leaf.

5.3.2.5 Tree height

The height of the B3CF-tree varies from one data set to another. It is close to those

of the other structures for the geographic coordinate and GPS trajectory datasets

and higher than those of the other structures for the other datasets. The high

height of the B3CF tree reflects the effectiveness of clustering using the DBSCAN

algorithm in partitioning the data. After analyzing and comparing the statistical

results of the construction and quality of the B3CF-tree, it can be deduced that the

proposed index structure performs well. This is due to the use of a combination

of the DBSCAN algorithm in clustering and the parallelism method during the

construction of the cluster index. This combination allows a fast construction of

the index without overlapping nodes. Indeed, the use of the DBSCAN algorithm

guarantees the creation of clusters without overlapping data. On the other hand,

when building the B3CF-tree, the choice of the two most distant objects, inside the

150

CHAPTER. 5 Parallel Construction of B3CF-trees

B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 50 100 150 200 250 300 350

Geographical Coordinates

 B3CF-tree

BCCF-tree
BB-tree
MX-tree

IWC-tree

0 2000 4000 6000 8000 10000

GPS Trajectory

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 5000 10000 15000 20000 25000

Tracking dataset

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 5000 10000 15000 20000 25000 30000 35000

WARD

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 1000 2000 3000 4000 5000

Number of internal nodes

Smart Home data

B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 2000 4000 6000 8000 10000

Number of nodes leaves

Geographical Coordinates

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 1000 2000 3000 4000 5000

GPS Trajectory

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 500 1000 1500 2000 2500 3000

Tracking Dataset

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 500 1000 1500 2000 2500 3000 3500 4000

WARD

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 1000 2000 3000 4000

Smart Home data

B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 2 4 6 8 10 12 14 16

 Geo. Coordinates

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 200 400 600 800 1000

GPS Trajectory

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 50 100 150 200 250 300 350 400 450

 Tracking dataset

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 50 100 150 200 250 300

 WARD

 B3CF-tree
BCCF-tree

BB-tree
MX-tree

IWC-tree

0 300 600 900 1200 1500 1800

Height of the tree

Smart Home data

Figure 5.7: Number of internal nodes, number of nodes leaves and height of B3CF-
tree, BCCF-tree, BB-tree, MX-tree and IWC-tree.

Table 5.5: Values of the number of internal nodes, the number of the nodes leaves
and the height of the tree.

Number of internal nodes Number of nodes leaves Height of the tree
B3CF
tree

BCCF
tree

BB
tree

MX
tree

IWC
tree

B3CF
tree

BCCF
tree

BB
tree

MX
tree

IWC
tree

B3CF
tree

BCCF
tree

BB
tree

MX
tree

IWC
tree

Geographical
coordinates 35 45 44 44 341 39 46 45 45 288 14 8 12 7 15

GPS
Trajectory 264 266 233 232 9052 267 267 243 233 2 267 17 22 30 9052

Tracking
Database 339 425 384 434 24077 393 426 385 435 10005 276 29 25 35 399

WARD 1489 2108 1489 1507 348109 1741 2109 1490 1508 220874 263 267 37 129 69
Smart

Home data 1667 4311 2577 3626 – 1678 4312 2578 3627 – 1678 1226 44 818 –

containers, as pivots guarantees the partitioning of the space into two parts, which

ensures the non-overlapping of the nodes and the good balancing of the index. All

these criteria can allow a fast search when searching the similarity query. To test

the effectiveness of our B3CF-tree, the results of the kNN search will be presented

and discussed in the next section.

151

CHAPTER. 5 Parallel Construction of B3CF-trees

5.3.3 Evaluation and comparison of the kNN search

For the evaluation of kNN search with k = 5, 10, 15, 20, 50, and 100 in the pro-

posed B3CF-tree index structure, the number of distances, number of compar-

isons, search time and number of visited leaves will be determined to reach the

100 queries. When examining the search efficiency of similarity queries, the ob-

tained statistical results were compared with those of the BCCF-tree, MX-tree,

BB-tree and IWC-tree indexing structures. Note that all statistical results were

averaged over 100 randomly generated queries.

k=5 k=10 k=15 k=20 k=50 k=100
0

2

4

6

8

10

Geographical Coordinates

27
5

27
5

25
9

24
0

21
3

18
2 63
5

63
5

60
0

55
1

49
6

43
9

N
um

be
r

of
 d

is
ta

nc
es

 (
x1

0
4)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

2

4

6

8

10

GPS Trajectory

N
um

be
r

of
 d

is
ta

nc
es

 (
x1

0
5)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

1

2

3

4

5

6

Tracking data

13
81

11
22

96
0

93
3

90
5

87
8

43
22

6

35
90

2

31
15

4

30
34

6

29
53

3

28
71

6

N
um

be
r

of
 d

is
ta

nc
es

 (
x1

0
6)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

2

4

6

8

10
WARD

25
22

23
34

22
12

21
91

21
69

21
48

N
um

be
r

of
 d

is
ta

nc
es

 (
x1

0
7)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0 Smart Home data

N
um

be
r

of
 d

is
ta

nc
es

 (
x1

0
8) B3CF-tree

 BCCF-tree
 BB-tree
 MX-tree

Figure 5.8: Number of calculated distances for the kNN search in B3CF-tree,
BCCF-tree, BB-tree, MX-tree and IWC-tree.

5.3.3.1 Number of calculated distances

Figure 5.8 shows the number of calculated distances for number of neighbors k

between 5 and 100. As can be seen, the proposed B3CF-tree has the smallest

number of calculated distances compared to the BCCF-tree, the BB-tree, the MX-

tree and the IWC-tree. We can see, also, that the number of distances calculated

152

CHAPTER. 5 Parallel Construction of B3CF-trees

in the B3CF-tree (Figure 5.8) is nearly invariant as a function of the number of

neighbors k between 50 and 100. For all databases used in this evaluation, the

ratio between the number of distances of k = 50 and k = 100 varies between 1.00%

and 2.00%. This result reflects the efficiency of the parallel search in our proposed

structure. Even the number of calculated distances is high in the BCCF-tree, it is

not affected, for some databases, by the increase of the number of neighbors k like

the BB-tree, the MX-tree and the IWC-tree. Table 5.6 summarizes the values of

the number of calculated distances.

k=5 k=10 k=15 k=20 k=50 k=100
0
1
2
3
4
5
6
7
8
9 Geographical Coordinates

N
um

be
r

of
 c

om
pa

ris
on

s
(x

10
4) B3CF-tree

 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

2

4

6

8

10

12

GPS Trajectory

N
um

be
r

of
 c

om
pa

ris
on

s
(x

10
5) B3CF-tree

 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

1

2

3

4

5

6 Tracking data

55
51

2

34
44

0

15
42

1

11
77

6

79
94

40
77

N

um
be

r
of

 c
om

pa
ris

on
s

(x
10

6) B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0
1
2
3
4
5
6
7
8
9

10 WARD

18
91

08

99
49

3

41
06

4

30
96

6

20
76

1

10
44

8

N
um

be
r

of
 c

om
pa

ris
on

s
(x

10
7) B3CF-tree

 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

20

40

60

80

100

120

140

160

180

200 Smart Home data

N
um

be
r

of
 c

om
pa

ris
on

s
(x

10
4) B3CF-tree

 BCCF-tree
 BB-tree (x10 2)
 MX-tree

Figure 5.9: Number of comparisons calculated for the kNN search in B3CF-tree,
BCCF-tree, BB-tree, MX-tree and IWC-tree.

5.3.3.2 Number of calculated comparisons

As can be seen in Figure 5.9, for all the used datasets, the lowest number of com-

parisons corresponds to the proposed B3CF-tree, except for the GPS trajectory

data where the IWC-tree has the lowest number of comparisons and almost con-

stant regardless of the value of k. However, for the same dataset, when we compare

153

CHAPTER. 5 Parallel Construction of B3CF-trees

the variation of the number of comparisons in the B3CF-tree as a function of the

parameter k with those of the other index structures, one can observe that the

variation of the number of comparisons in the B3CF tree follows a saturation law

which indicates that the number of comparisons stabilizes for a value of k greater

than 100. This is not the case for the BB-tree, for example, where the evolution of

the number of comparisons follows an exponential law. Even though the number

of comparisons in the MX-tree is lower than in our B3CF-tree, it increases about

10 times when k = 100. Table 5.7 lists the values of the number of comparisons

calculated.

k=5 k=10 k=15 k=20 k=50 k=100
0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,10
0,11 Geographical Coordinates

0.
00

00
06

0.
00

00
04

0.
00

00
02

3

0.
00

00
02

0.
00

00
01

2

0.
00

00
01

T
im

e
of

 s
ea

rc
h

(s
)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0,0

0,2

0,4

0,6

0,8

1,0 GPS Trajectory

0.
00

12

0.
00

07

0.
00

02
3

0.
00

01
8

0.
00

01
2

0.
00

01

T
im

e
of

 s
ea

ch
 (

s)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

5

10

15

20

Tracking data

0.
00

02

0.
00

01

0.
00

00
7

0.
00

00
6

0.
00

00
6

0.
00

00
5

T
im

e
of

 s
ea

rc
h

(s
)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

20

40

60

80

100

120

WARD

0.
00

58

0.
00

28

0.
00

15

0.
00

13

0.
00

12

0.
00

1

T
im

e
of

 s
ea

rc
h

(s
)

 B3CF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0

0.
00

60
3

0.
00

55
6

0.
00

52
1

0.
00

41
9

0.
00

27
2

0.
00

15
7

Smart Home data

T
im

e
of

 s
ea

rc
h

(s
)

 B3CF-tree
 BCCF-tree
 BB-tree (x10 2)
 MX-tree

Figure 5.10: Time of kNN search in B3CF-tree, BCCF-tree, BB-tree, MX-tree and
IWC-tree.

5.3.3.3 Time of search

According to Figure 5.10, the proposed B3CF-tree has the lowest search time com-

pared to the BCCF-tree, the BB-tree, the MX-tree and the ICW-tree structures.

The ratio of the search time of the BCCF-tree to the B3CF-tree is 0.07% for the

154

CHAPTER. 5 Parallel Construction of B3CF-trees

geographical coordinates data, 0.55% for the GPS trajectory data, 0.06% for the

tracking dataset, 0.13% for the WARD database and 0.55% for the smart home

data. We observe that the value of k has no influence on the performance of the

search algorithm. In the B3CF-tree, the ratio of the search time of k = 50 and

k = 100 is 1.56% for the geographical coordinates data, 1.74% for the GPS tra-

jectory data, 1.82% for the tracking dataset, 2.07% for the WARD database and

1.07% for the smart home data. Our proposed index exhibits the shortest search

time not only by comparison with the chosen structures, but also, by comparison

with other indexes. For example, according to Zhang et al.[185], the combination

of the R-tree and KD-tree (EEMINC) answered the point query in 1 thousand

nodes and 10 million records in time between 40 and 50 ms and, according to Hu

et al. [210], the execution of the 8 nearest neighbours query on the hierarchical

index method of 5.5 billion points takes 8.49 s. For smart home data of 5 millions

vectors (Figure 5.10), the B3CF-tree answers the average of 100 queries in a time

between 0.0016 and 0.006 s. This indicates that the use of clustering coupled with

parallelism significantly improves the efficiency of the kNN search by decreasing

the search time. The search time values are grouped in Table 5.8.

155

C
H

A
P

T
E

R
.5

P
arallelC

onstruction
ofB

3C
F
-trees

Table 5.6: Number of distances calculated for the kNN search in B3CF-tree, BCCF-tree, BB-tree, MX-tree and
IWC-tree.

Geographical coordinates GPS Trajectory Tracking Database WARD Smart Home data
B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree

k=5 1.80E+02 4.40E+02 4.50E+03 5.10E+03 5.60E+03 6.80E+03 2.10E+04 2.20E+04 1.90E+04 3.60E+04 8.80E+02 2.90E+04 3.10E+05 3.00E+05 4.20E+05 2.10E+09 3.70E+12 3.80E+12 4.40E+12 2.80E+12 7.40E+05 2.10E+06 5.10E+06 1.50E+06
k=10 2.10E+02 5.00E+02 1.00E+04 1.00E+04 1.10E+04 7.30E+03 2.20E+04 5.50E+04 1.90E+04 3.60E+04 9.10E+02 3.00E+04 6.20E+05 6.00E+05 7.20E+05 2.20E+09 7.40E+12 8.60E+12 8.70E+12 3.80E+12 7.50E+05 4.30E+06 5.30E+06 3.10E+06
k=15 2.40E+02 5.50E+02 1.50E+04 1.50E+04 1.60E+04 7.70E+03 2,30E+04 1.10E+05 2.00E+04 3.60E+04 9.30E+02 3.00E+04 9.20E+05 9.10E+05 1.00E+06 2.20E+09 1.10E+13 1.50E+13 1.30E+13 4.80E+12 7.60E+05 6.40E+06 3.10E+07 4.60E+06
k=20 2.60E+02 6.00E+02 2.00E+04 2.00E+04 2.10E+04 8.20E+03 2.50E+04 1.50E+05 2.00E+04 3.60E+04 9.60E+02 3.10E+04 1.20E+06 1.20E+06 1.30E+06 2.20E+09 1.50E+13 2.00E+13 1.70E+13 5.70E+12 7.70E+05 8.50E+06 4.00E+07 6.10E+06
k=50 2.80E+02 6.40E+02 4.80E+04 4.90E+04 5.00E+04 1.10E+04 3.30E+04 3.60E+05 2.20E+04 3.60E+04 1.10E+03 3.60E+04 3.10E+06 3.00E+06 3.20E+06 2.30E+09 3.60E+13 4.90E+13 4.20E+13 4.80E+13 8.20E+05 2.10E+07 9.50E+07 1.10E+07
100 2.80E+02 6.40E+02 9.30E+04 9.30E+04 9.60E+04 1.20E+04 3.70E+04 1.10E+06 3.80E+05 3.60E+04 1.4.0E+03 4.30E+04 6.20E+06 6.00E+06 6.40E+06 2.50E+09 7.70E+12 9.80E+13 8.10E+13 9.90E+13 9.00E+05 4.10E+07 1.90E+08 3.00E+07

156

C
H

A
P

T
E

R
.5

P
arallelC

onstruction
ofB

3C
F
-trees

Table 5.7: Number of comparisons calculated for the kNN search in B3CF-tree, BCCF-tree, BB-tree, MX-tree and
IWC-tree.

Geographical coordinates GPS Trajectory Tracking Database WARD Smart Home data
B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree IWC-tree B3CF-tree BCCF-tree BB-tree MX-tree

k=5 0.55 1.21 5.55 6.12 4.44 2.90E+04 8.80E+04 4.00E+04 3.70E+04 2.70E+04 4.10E+03 1.30E+05 3.70E+05 3.70E+05 3.30E+05 1.00E+04 7.60E+05 4.80E+06 8.80E+05 2.20E+06 7.30E+04 4.40E+05 1.00E+07 3.10E+05
k=10 0.92 2.02 11.00 11.10 9.98 5.60E+04 1.70E+05 7.40E+04 3.80E+04 2.70E+04 8.00E+03 2.60E+05 6.80E+05 6.70E+05 6.30E+05 2.10E+04 7.70E+05 9.60E+06 8.90E+05 3.20E+06 7.30E+04 4.40E+05 1.00E+07 3.10E+05
k=15 1.16 2.54 1.59 16.10 14.70 8.00E+04 2.40E+05 1.30E+05 3.80E+04 2.70E+04 1.20E+04 3.80E+05 9.90E+05 9.70E+05 9.40E+05 3.10E+04 7.80E+05 1.60E+07 9.00E+05 4.10E+06 7.30E+04 4.50E+05 3.60E+07 3.10E+05
k=20 1.27 2.81 20.70 21.00 19.50 1.00E+05 3.10E+05 1.70E+05 3.90E+04 2.70E+04 1.50E+04 5.00E+05 1.30E+06 1.30E+06 1.20E+06 4.10E+04 7.90E+05 2.10E+07 9.00E+05 5.10E+06 7.30E+04 4.50E+05 4.50E+07 3.10E+05
k=50 1.32 2.91 49.00 49.90 48.20 1.90E+05 5.70E+05 3.80E+05 4.00E+04 2.70E+04 3.40E+04 1.10E+06 3.10E+06 3.10E+06 3.10E+06 9.90E+04 8.30E+05 5.00E+07 9.40E+05 4.70E+07 7.40E+04 4.60E+05 1.00E+08 3.20E+05
k=100 1.32 2.91 93.80 94.10 94.30 2.00E+05 6.10E+05 1.10E+06 4.00E+05 2.70E+04 5.60E+04 1.90E+06 6.20E+06 6.10E+06 6.30E+06 1.90E+05 8.90E+05 9.90E+07 1.00E+06 9.80E+07 7.60E+04 4.80E+05 1.90E+08 3,30E+05

157

C
H

A
P

T
E

R
.5

P
arallelC

onstruction
ofB

3C
F
-trees

Table 5.8: Time of the kNN search in B3CF-tree, BCCF-tree, BB-tree, MX-tree and IWC-tree

Geographical coordinates GPS Trajectory Tracking Database WARD Smart Home data
k B3CF BCCF BB MX IWC B3CF BCCF BB MX IWC B3CF BCCF BB MX IWC B3CF BCCF BB MX IWC B3CF BCCF BB MX
5 7.50E-07 2.00E-03 6.00E-03 8.00E-03 6.00E-03 9.50E-05 2.90E-02 2.70E-02 2.40E-02 4.00E-02 5.30E-05 1.10E-01 1.30E+00 1.20 1.40 9.90E-04 1.20 5.90 1.20 4.10 2.00E-03 5.60E-01 8.80 4.20E-02
10 1.20E-06 3.00E-03 1.10E-02 1.20E-02 1.20E-02 1.20E-04 3.80E-02 5.90E-02 2.50E-02 4.10E-02 6.10E-05 1.10E-01 2.20E+00 2.20 2.30 1.20E-03 1.30 1.20E+01 1.30 5.30 2.70E-03 5.90E-01 9.10 4.40E-02
15 1.70E-06 3.10E-03 1.90E-02 1.50E-02 2.20E-02 1.80E-04 4.90E-02 1.10E-01 2.50E-02 6.50E-02 6.10E-05 1.20E-01 3.20E+00 3.20 3.30 1.30E-03 1.30 1.90E+01 1.40 6.70 4.20E-03 6.30E-01 3.70E+01 4.60E-02
20 2.30E-06 3.40E-03 1.80E-02 1.80E-02 2.10E-02 2.40E-04 5.70E-02 1.40E-01 2.60E-02 4.40E-02 6.90E-05 1.20E-01 4.20E+00 4.10 4.20 1.50E-03 1.40 2.50E+01 1.50 7.50 5.20E-03 6.60E-01 4.70E+01 4.90E-02
50 3.90E-06 4.10E-03 3.90E-02 3.90E-02 4.80E-02 6.90E-04 1.20E-01 3.20E-01 2.80E-02 4.10E-02 1.10E-04 1.60E-01 1.00E+01 10 1.00 2.80E-03 1.90 5.90E+01 2.10 5.80E+01 5.60E-03 8.80E-01 1.10E+02 6.40E-02
100 6.10E-06 4.80E-03 7.20E-02 7.00E-02 1.00E-01 1.20E-03 1.60E-01 9.80E-01 3.50E-01 4.00E-02 2.00E-04 2.10E-01 2.00E+01 20 2.00 5.80E-03 2.70 1.20E+02 3.10 1.20E+02 6.00E-03 1.30E+00 2.00E+02 8,90E-02

158

CHAPTER. 5 Parallel Construction of B3CF-trees

B3CF-tree BCCF-tree BB-tree MX-tree
0
1
2
3
4

Geographical Coordinates

0

1

2

3

A
ve

ra
ge

 n
um

be
r

of
 th

e
vi

si
te

d
le

av
es

x1
00

0
x1

00
0

x1
00

GPS Trajectory

0
1
2
3
4

5.64

Tracking dataset

0,0

0,5

1,0

1,5

4.37

x1
00

x1
0

x1000WARD

0,0
0,5
1,0
1,5
2,0
2,5

Smart Home data

Figure 5.11: Number of the visited leaves in B3CF-tree, BCCF-tree, BB-tree and
MX-tree.

5.3.3.4 Number of the visited leave

Figure 5.11 shows the number of leaves visited during the kNN search in the B3CF-

tree, BCCF tree, BB tree and MX tree. Note that the number of visited leaves is

invariant to the number of neighbors k which is between 5 and 100. The IWC tree

is not considered because this structure does not support kNN search [5]. Indeed,

this structure presents poor results according to Figure5.8, 5.9 and 5.10. As can be

seen in Figure 5.11, the B3CF-tree presents the smallest number of visited leaves

and that is why the search time in our index is low. This is due to the use of

DBSCAN algorithm for clustering which induced non-overlapping clusters. Figure

5.11 shows the number of the visited leaves during the kNN search in B3CF-tree,

BCCF-tree, BB-tree and MX-tree. It is to notice that the number of the visited

159

CHAPTER. 5 Parallel Construction of B3CF-trees

Table 5.9: Average number of the visited leaves in B3CF-tree, BCCF-tree, BB-tree
and MX-tree.

Number of the visited leaves Geographical
Coordinates GPS Trajectory Tracking Database WARD Smart Home data

B3CF-tree 6.025 89 5.465 4.36918 120.36
BCCF-tree 11.65 267 163.84 1513.39 359.04
BB-tree 45 234 385 1000000 2578
MX-tree 28.74 160 435 1320.32 2400.25

leaves is invariant as a function of the number of neighbors k which is between 5

and 100. The IWC-tree is not considered because this structure does not support

the kNN search [5]. Indeed, this structure presents poor results according to Figure

5.8, 5.9 and 5.10. As can be seen in Figure 5.11, the B3CF-tree exhibits the lowest

number of the visited leaves and that is why the time of search in our index is

low.This is due to the use of the DBSCAN algorithm for clustering which induced

no-overlapping clusters. The number of the visited leaves is regrouped in Table

5.9.

5.4 Conclusion

This chapter presented a new indexing structure called B3CF-tree(Binary tree

based on Containers at the Cloud-Clusters Fog computing level) the indexing pro-

cess is delocalized from the cloud to the fog nodes to get the data near the indexing

structure and thus reduce the network traffic congestion significantly. Moreover,

each fog node creates its unique indexing structure, allowing not only parallelism in

tree construction, but also parallelism in the search process by launching the same

query simultaneously on all fog nodes. Second, a post-index process is performed

in each fog node. It partitions the data into similar groups using the DBSCAN

algorithm. The aim of this process is to generate a balanced tree with a reduced

degree of overlapping between the leaves of the tree. Indeed, DBSCAN is a density-

based clustering method that is distinguished by its ability to automatically create

160

CHAPTER. 5 Parallel Construction of B3CF-trees

clusters with almost zero inter-class similarity.

161

6 CV Method for Indexing Contin-

uous IoT Data

6.1 Introduction

In the previous chapter, we have presented the B3CF-tree that is tested for a

unique data stream. IoT data from devices are continuously generated in multi

types such as textual, numerical, streaming and multimedia data [199]. Storing

this continuous streams of IoT data and finding an efficient retrieving method is a

big challenge regarding the dynamicity and the diversity of types and dimensions.

In this chapter, in order to index continuous stream of IoT data and finding an

efficient retrieving method. We propose an effective approach, in the fog-cloud

computing level, to organize and store continuous IoT data stream and make

rapid the similarity query search. Because it is collected from different devices,

in the terminal layer, IoT data is characterized by heterogeneity, noise, diversity

and rapid growth [85]. For the organization of each IoT data stream, the fog

layer is divided into three levels: clustering fog level, clusters processing fog levels

and indexing fog level. In the clustering fog level, DBSCAN is used for clustering

because it is the most suitable algorithm for grouping diverse IoT data into homo-

geneous and high density clusters. Each cluster of the first data stream is stored

162

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

in the clusters processing fog level and directly indexed in a BH-tree (Binary tree

with Hyper-plane) in the indexing fog level. For the arrival data streams, after

DBSCAN clustering, the indexing is based on the comparison of the coefficient of

variation (CV) value of the arrival cluster and those of the union of the arrival

cluster with the existing clusters in the clusters processing fog level. According to

the minimum value of CV, the arrival cluster is directly indexed in a new BH-tree

or, is inserted in an existing index.

The proposed approach will be detailed in what follows. The simulation and re-

sults will be presented and discussed by the comparison with two other scenarios

.The first scenario is called Creation of a New Index (CNI method) and the second

scenario is called Insertion in an Existing Index (IEI method). The comparison

in terms of the number of calculated distances, the number of calculated com-

parisons and the construction time during the trees construction process. The

same parameters were tested and compared with two other scenarios in the kNN

query search method. The consumed energy during the parallel kNN search is also

presented and discussed. For the storage and the indexing of the continuous IoT

data stream, we benefit from the cloud-fog computing architecture (Figure 8.1). In

the terminal layer. IoT devices, geographically distributed, generate continuously

large and diverse data. The indexing of this continuous data stream is proceeded

in the fog-computing layer because of its numerous characteristics such as the re-

duction of the latency of services, the providing of real-time applications and the

capacity of processing of high number of nodes [53]

6.2 Proposed Approach

For the storage and the indexing of the continuous IoT data stream, we benefit

from the cloud-fog computing architecture (Figure 8.1). In the terminal layer. IoT

163

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

devices, geographically distributed, generate continuously large and diverse data.

The indexing of this continuous data stream is proceeded in the fog-computing

layer because of its numerous characteristics such as the reduction of the latency

of services, the providing of real-time applications and the capacity of processing

of high number of nodes [53].In this work, the fog layer is divided into three levels:

the clustering fog level, the clusters processing fog level and the indexing fog level

(Figure 6.1). In the clustering fog level, each data stream, from the terminal layer,

is grouped into homogenous clusters. Clusters of the first data stream are stored in

the clusters processing fog level and their objects are directly indexed in separated

BH-trees in the indexing fog layer. For the arrival data streams, according to the

Coefficient of Variation (CV) value of their clusters, in the clusters processing fog

level, a new BH-tree will be constructed or objects of the arrival cluster will be

inserted in an existing BH-tree.

The processing capabilities of fog nodes are not affected by the additional work

introduced in each layer since the amount of sensors installed will automatically

give rise to a suitable type of hardware to capture, process and transmit data

from the sensors. This means that a large number of sensors implies additional

power from the fog (This condition is ensured in the installation process). In addi-

tion, fog’s three-level architecture with specialisation of each level allows smoother

processing.

164

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

Te
rm

in
al

la

ye
r

Fo
g

la
ye

r
C

lo
u

d

la
ye

r

Continuous IoT
data stream

Data collection
and Clustering

Creation of new
index or

insertion in
existing index

Data storage and
Query search

Cluster
processing using

CV

Figure 6.1: Architecture of the CV method for indexing continuous IoT data.

In what follows, a detailed description of the clustering, the CV and the indexing

methods will be presented. The definitions of the used parameters are regrouped

in Table 6.1.

6.2.1 Clustering method

In the clustering fog level, each data stream, sent by the terminal layer, is collected

and grouped in N clusters Cln with {n = 1..N} using the DBSCAN algorithm

(Density-Based Spatial Clustering of Applications with Noise) [276] modified by

the introduction of the calculation of the clusters centers, noticed in this work cn,

for the coefficient of the variation (CV) calculation. Each cluster Cln contains

similar elements.

The triggering of the clustering process is closely linked to the storage capacity of

the fog node since the fog nodes do not have the same storage and processing ca-

pacities. This condition makes it possible to go beyond congestion and conceptual

bottleneck and allows tailoring processing with the capabilities of the fog node.

165

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

DBSCAN algorithm is one of the most used data clustering method [277]. This

algorithm is based on the connection of points within specific distance threshold.

However, it connects only those points that satisfied a density threshold (mini-

mum number of objects in a radius). The DBSCAN algorithm partition the data

into clusters of arbitrary shapes. Each cluster contains all the objects that are

connected by the density. The choice of this clustering method came from the fact

the DBSCAN clusters are automatically formed while the k-means algorithm, for

example, requires the determination of the number of clusters before clustering.

Also, the DBSCAN algorithm is robust in the detection of outliers which are con-

sidered as objects that wait for other similar objects in the next data stream. The

complexity of the DBSCAN algorithm for grouping a dataset of o objects into N

clusters is O(o.d) [278] where o = oc1 + oc2 + . . . + ocN which could be written

as o = N.mean(oc), where oc is the number of objects in per cluster, and d is

average number of neighbours. That gives us the final form of the complexity of

the DBSCAN algorithm for each data stream which is O(N.mean(oc).d).

6.2.1.1 CV method

In the clusters processing fog level, the coefficient of variation (CV) is used as a

criterion to decide if a cluster of the arrival data stream is to be inserted in an

existing BH-tree or indexed in a new BH-tree. The coefficient of variation is a

statistical measure of the dispersion of data points in a dataset around the mean.

It represents the ratio of the standard deviation to the mean. The advantage of

the use of the coefficient of variation is that it is not sensible to the data type and

dimension [279]. The clusters processing fog level contains clusters of the first data

stream Cln. In this fog level (Figure 6.2), each cluster of the arrival data stream

Cl
′

k is unified with a copy of all the existing clusters Cln (Algorithm 5).

166

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

Table 6.1: Table of notations.

Abbreviation Explantation
N Number of the first clusters
K Number of the arrival clusters
Cln, {n = 1..N} Clusters of the first data stream
Cl

′

k, {k = 1..K} Clusters of the arrival data stream
cn,{n = 1..N} Cluster centers of the first data stream
c
′

k, {k = 1..K} Cluster centers of the arrival data stream
Cl

′

k ∪ Cln Union of the arrival clusters Cl
′

k and the first
clusters Cln

d(cn, c
′

k) Distance between two centers
In, {n = 1..N} Set of indexes
Mind Minimum distances between the centers

of the existing clusters and the incoming clusters
p1,p2 Pivots
E Set of elements
LN Leaf node
IN Inner node
o Object
L Left sub tree
R Right sub tree
q Query
rq Radius for recovering k objects closes to q
A List in with, the set of k objects is stored
B(q, rq) Query ball q with radius rq

After that, the CV of the cluster of the arrival data stream CVCl
′
k

and the CV of

the union of this cluster with every existing cluster CVCl
′
k∪Cln

are determined. If

the cluster of the arrival data stream Cl
′

k has the minimum value of CV, a new

BH-tree is constructed, in the indexing fog level, and the cluster Cl
′

k is stored with

the existing clusters Cln in the clusters processing fog level. If the minimum value

of CV correspond to the union of the cluster of the arrival data stream with an

existing cluster Cl
′

k ∪ Cln, objects in the arrival cluster Cl
′

k are inserted in the

BH-tree of the corresponding existing cluster Cln.

167

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

C1 C3

C2

Cn

C4

BH-tree 1

BH-tree 2

BH-tree 3

BH-tree 4

BH-tree n

First clusters

C1 U C1’ C3 U C1’

C2 U C1’

Cn U C1’

C4 U C1’

C1’

Arrival cluster

CVmin

New BH-tree

Construction of a new BH-tree with data
of the arrival cluster

Insertion of the arrival data in a
existing BH-tree

Figure 6.2: CV method in the cluster processing level.

Because the CV calculation of the union of one arrival cluster with the first clus-

ters is parallel, the complexity for all clusters is taken as the complexity for the

CV calculation of the cluster with a maximum number of objects ocmax which

represents approximately 2mean(oc) and it is given by O(mean(oc)). Due to the

fact that the comparison of N arrival clusters with existing clusters is sequential,

the complexity of the CV method for each data stream is O(N.mean(oc)). The

CV method processes the clusters and not the data themselves, this makes it pos-

sible to considerably reduce the processing time, despite a polynomial complexity,

because the number of clusters is negligible compared to the number of data. This

is due to the capacities of the DBSCAN method which allows to detect all the

clusters, even if they have a convex shape. Indeed, only the true clusters were

taken into consideration by the method, the others are judged as noises.

6.2.1.2 Indexing method

In the indexing fog layer, the used Binary tree with Hyper-plane (BH), simi-

lar to the B3CF-tree [280], is based on a recursive division of the space, by an

168

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

Algorithm 5 CV method

Require: Cl = {Cl1..Cln, n = 1..N} Cl
′
= {Cl

′
1..Cl

′

k, k = 1..K}
Ensure: Im

for each data stream do
for cl

′ ∈ Cl
′ do

CVcl′ ←Calculate the coefficient of variation of the new cluster (cl
′
)

for cl ∈ Cl do
CVcl′∪cl ← Calculate the coefficient of variation of (Cl

′ ∪ Cl)
if CVcl′ < CVcl′∪cl then

create new index (cl′)
else

insert cl
′ in In

end if
end for

end for
end for

hyper-plane, into two regions through two pivots p1, p2 chosen as the two farthest

elements. In the set E, elements closer to p1 belong to the first region while those

closer to p2 belong to the second region. This results in avoiding the overlapping

of regions when answering queries. Firstly, a leaf node LN contains a subset ELN

of objects with ELN ⊆ E. Secondly, an inner node IN consists of two elements

and two children: (p1, p2, L,R) ∈ O2 × IN2. That is :

• p1,p2 are two unconfused objects, d(p1, p2) = dmax, called "pivots". They

define the hyper-plane.

• L is a left sub-tree and R is a right sub-tree.

The construction of BH-tree is realized incrementally.The insertion is top-down.

6.2.1.2.a Parallel kNN similarity queries search

The parallel kNN method is adopted for the similarity query search in BH-trees

because the add of an arrival cluster to the first clusters induce a re-computation

169

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

of the Delaunay graphs in the cloud and in all fogs which may cause a latency of

continuous IoT data indexing process. The search algorithm gives an answer to

the query q with radius rq to recover the k objects closest to q (Algorithm 6). The

set of k objects is stored in the list A. To address the queries, we apply the kNN

algorithm on the BH-tree by starting from the root to its leaves. The search is

performed by calculating the distance between the query point and the two pivots

p1 or p2, going down the tree and determining whether the search should continue

in the left branch L or the right branch R. We start the query with a radius

rq = +∞ and then, decrements by traversing each sub-tree that corresponds to

the distance to the ke object in the order list A. To make the kNN search more

efficient, parallelism is also used in this work in the similarity search query process

to minimize retrieve time [278]. Indeed, the complexity of the kNN search in all

indexes could be reduced to the complexity of search in only one index.

To test the efficiency of our proposed approach, the CV method will be confronted

to two other scenarios. For these scenarios, the fog layer contains only the cluster-

ing and the indexing levels. The first scenario is called Creation of a New Index

(CNI) and the second scenario is called Insertion in an Insertion in an Existing

Index (IEI).

6.2.1.2.b CNI method

In this scenario, objects in clusters Cl
′ of the arrival data stream are indexed in

a new BH-tree. The description of this method is presented in algorithm 7. This

method is simple and it needs no comparison with the existing clusters or indexes.

The CNI method results in the creation of indexes of similar objects.

170

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

Algorithm 6 kNN search in the BH-tree

kNN-BH-tree

IN ∈ N,
q ∈ Rn,
k ∈ N∗,
d : O× O→ R+,
rq ∈ R+ = +∞,
A ∈ (R+ × O)N = ∅

 ∈ (R+ × O)N

with:
-(p1, p2, L,R) = IN
- d1 = d(p1, q)
- d2 = d(p2, q)
-B(q, rq) query ball q with radius rq
if IN == NULL then

return A
else

Calculate the distances d1 and d2
if |A| < k then
rq ← +∞

else
r ← A

end if
for i ∈ (0, 1) do

if di < rq then
A← k − Insert(k,A, (di, pi))

end if
for each node IN do

if B(q, rq) ∩ IN ̸= ∅ then
A← kNN −BH − tree(INi, q, k, d, rq, A)

end if
end for

end for
end if

171

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

Algorithm 7 CNI method
Require: Cl = {Cl1..Cln, n = 1..N}
Cl

′
= {Cl

′
1..Cl

′

k, k = 1..K}
Ensure: In+k

for each data stream do
for cl

′ ∈ Cl
′ do

create new index(cl
′)

end for
end for

6.2.1.2.c IEI method

In this scenario, objects of each cluster of the arrival data stream are inserted in

one of the existing indexes. In this method, clusters centers of the first data stream

cn are took as representatives of the existing indexes. The choice of an existing

BH-tree, in which, the objects of the arrival cluster Cl
′ will be inserted is basing on

the test of distances between the arrival cluster center c′k and the existing BH-tree

representative centers cn (Algorithm 8). Objects of the arrival cluster Cl
′ will be

inserted in index n when the distance between c′k and cn is minimum.

Algorithm 8 IEI method
Require: Cl = {Cl1..Cln, n = 1..N}
Cl

′
= {Cl

′
1..Cl

′

k, k = 1..K}
Ensure: In

for each data stream do
for cl

′

k ∈ Cl
′ do

for cln ∈ Cl do
Mind ←calculate distances(d(cn, c

′

k))
insert cl

′ in In
end for

end for
end for

172

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

6.3 Simulation and Results

In this section, we firstly describe the experimental parameters, including the

datasets and the experimental platform. Then, we report and discuss our exper-

imental results with respect to the evolution of the number of indexes with the

data stream, the evaluation of the indexes construction and the evaluation of the

parallel kNN search.

6.3.1 Experimental setting

For the experimental evaluation of the four proposed indexing methods, we have

used three real data sets (GPS trajectory, WARD and traffic datasets) and one

synthetic dataset (Tracking). Details on these datasets are presented in what

follow.

1. GPS Trajectories: Collected from Go!Track Android application [271].

2. Tracking dataset: Moving vectors generated by an object tracking simulator

with wireless cameras in the wireless multimedia sensor network in a random

simulation [5].

3. WARD (Wearable Action Recognition Database)[272]: Database of human

action reconnaissance using wearable movement sensors [273].

4. Traffic dataset: Belongs to the road networks category [281].

In order to achieve our data stream simulation experiments, all datasets were

divided into subsets. These subsets of different sizes and dimensions (Table 6.2)

are considered as data streams. Our experiments were implemented using Python

software installed in a 64-bit Linux operating system (Ubuntu) of Intel®Core TM

i7-8550U CPU, 1.80 GHz*8 processor, 16GB RAM and 256GB ROM.

173

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

Table 6.2: Characteristics of the selected datasets for the index evaluation.

Dataset Size (Vectors) Dimension Size of the data
stream(Vectors)

Size of data
stream (Bytes)

GPS trajectory 18107 3 4000 115507.02
Tracking a moving
object dataset 62702 20 12000 1270493.8

WARD 3078552 5 600000 18058184
Traffic dataset 5000000 2 1000000 20132659.2

1st 2nd 3rd 4th 5th
0

5

10

15

20

25

30

GPS trajectory

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

20

40

60

80

Tracking dataset

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

50

100

150

200

250

300

350
WARD

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0

20

40

60

80

100

Traffic dataset

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

Figure 6.3: Number of BH-trees versus data stream.

174

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

6.3.2 Evolution of the number of indexes with the data

stream

The variation of the number of indexes as a function of the stream for the used

datasets is presented, in figure 6.3, for the CV method and the two other scenarios.

It is to notice that for the first data stream, the BH-tree of each cluster was

directly constructed. The proposed method is used from the second data stream.

As awaited, the use of the IEI method results in the construction of a minimum

number of indexes that remains invariant with the data stream. In contrast to the

IEI method, the use of the CNI method results in the construction of a maximum

number of indexes that increases proportionally to the increasing number of data

streams. For the CV method, the number of the constructed indexes is between

the number of indexes from the IEI method and that from the CNI method. The

number of indexes by the CV method is closer to that by the IEI method, for all

datasets, which indicates that in the CV method, the insertion process is more

pronounced that the construction process. We can see that the number of indexes,

from the CV method, varies from a data to another. This depend, directly, on

the the dynamic aspect of the DBSCAN clustering which induced a change of

distances between clusters centers for each data stream.

6.3.3 Evaluation of indexes construction

For the evaluation of the BH-tree construction, the number of distances, the num-

ber of comparisons, the time of indexing and energy consumption are calculated

as a function of data stream.

175

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

6.3.3.1 Number of calculated distances

In figure 6.4, the number of distances is traced as a function of the data stream for

the three methods. We can see that the number of distances during the construc-

tion of the BH-trees starts varying from the second data stream. From this data

stream, the number of distances varies, from a method to another, as a function of

the data size. For the four datasets, the CNI method presents the highest number

of distances, since the creation of pivots requires more distances calculation, while

the IEI method presents a less number because in the insertion process, no pivots

are created. Despite the CV method combined both insertion and the indexing

processes, the number of distances, from this method, is close to that from the IEI

method and this reflects the efficiency of the CV method.

6.3.3.2 Number of calculated comparisons

The variation of the number of comparisons, as a function of the data stream, is

plotted in figure 6.5. As can be seen, this variation is similar to that of the number

of distances in figure 6.4. For the three methods, the number of comparisons is

greater than the number of distances. During the construction of new indexes or

during the insertion, comparisons are required to choose the left side or the right

side of each BH-tree.

6.3.3.3 Time of indexing

As shown in figure 6.6, the time of indexing depends, not only on the data stream,

but also on the size of each data stream. For GPS trajectory data, the time of

indexing is great when the IEI method is used while for tracking and WARD data,

the time of indexing is maximum when the CNI method is used. For the traffic

dataset, the time of indexing varies from a method to another, as a function of the

data stream. For the four used datasets, the indexing of data streams using the

176

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

1st 2nd 3rd 4th 5th
0

1x105

2x105

3x105

GPS trajectory

N
um

be
r

of
 d

is
ta

nc
es

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0,0

2,0x105

4,0x105

6,0x105

8,0x105

1,0x106

1,2x106

1,4x106

1,6x106

11
6

10
42

67
2

68
8

76
8

Tracking dataset

N
um

be
r

of
 d

is
ta

nc
es

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

1x108

2x108

3x108

4x108

5x108

20
8

92
6

11
40

11
40

11
28

WARD

N
um

be
r

of
 d

is
ta

nc
es

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0,0

2,0x107

4,0x107

6,0x107

8,0x107

1,0x108

Data stream

Traffic dataset

12
98

8

54
18

97
58

45
40

8N
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

Figure 6.4: Number of distances calculated during the indexing of each data
stream.

CV method takes acceptable times whatever the size of the data stream. Contrary

to the IEI and the CNI methods, the CV method is not sensitive to the size of the

data stream.

6.3.3.4 Energy consumption during the indexing

The energy consumption per stream is traced, in figure 6.7, for CV, CNI and

IEI methods. The energy consumption Eprog (in Joule) during the execution of a

program prog is given by the following expression [282] :

177

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

1st 2nd 3rd 4th 5th
0,0

2,0x104

4,0x104

6,0x104

8,0x104

1,0x105

1,2x105

1,4x105

1,6x105

1,8x105

GPS trajectory

N
um

be
r

of
 c

om
pa

ris
on

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

1x105

2x105

3x105

4x105

5x105

6x105

7x105

8x105

Tracking dataset

5852
1

33
6

34
4

38
4

N
um

be
r

of
 c

om
pa

ris
on

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0,0

5,0x107

1,0x108

1,5x108

2,0x108

2,5x108

10
4

46
3

57
0

57
0

56
4

WARD

N
um

be
r

of
 c

om
pa

ris
on

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0

1x107

2x107

3x107

4x107

5x107

Data stream

Traffic dataset

64
94

27
09

48
79

22
70

4N
um

be
r

of
 c

om
pa

ris
on

s
 CNI method
 IEI method
 CV method

Figure 6.5: Number of comparisons calculated during the indexing of each data
stream.

Eprog =

∫ te

tb

P (prog, t)dt−
∫ te

tb

Pi(t)dt (6.1)

where tb and te the beginning time and the end time of the execution of the

program prog (in second), P (prog, t) the electrical power needed for the execution

of the program prog (in Watts) and Pi(t) the idle power (in Watts). As can be

seen in figure 6.7, the energy consumption during the indexing using these three

methods varies from a dataset to another. For the GPS trajectory, the energy

consumption is elevated during the data indexing using the IEI method. The

energy consumption during the use of the CV method is a little bit less than

178

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

1st 2nd 3rd 4th 5th
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

GPS trajectory

T
im

e
of

 in
de

xi
ng

 (
s)

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0
5

10
15
20
25
30
35
40
45
50

Tracking dataset

T
im

e
of

 in
de

xi
ng

 (
s)

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0,0

5,0x103

1,0x104

1,5x104

2,0x104

WARD

35
5

71

T
im

e
of

 in
de

xi
ng

 (
s)

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0,0

5,0x102

1,0x103

1,5x103

2,0x103

2,5x103

3,0x103

3,5x103

Data stream

Taffic dataset

T
im

e
of

 in
de

xi
ng

 (
s)

 CNI method
 IEI method
 CV method

Figure 6.6: Time of data stream indexing using the CV method compared with
both the IEI and the CNI methods.

that during the use of the CNI method. Contrary to the GPS trajectory dataset,

the energy consumption during the indexing of both tracking and WARD datasets

using the CNI method is higher compared with the CV and the IEI methods. These

last are mainly close. For the traffic dataset, the energy consumption during the

indexing using the CNI and the IEI methods is comparable and is greater than

that during the use of the CV method.

179

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

GPS trajectory
0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

Tacking dataset
0

1

2

3

4

5

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

WARD
0

500

1000

1500

2000

2500

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

Traffic dataset
0

50

100

150

200

250

300

350

400

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

Figure 6.7: Average energy consumption during indexes construction using CV,
CNI and IEI methods.

6.3.4 Quality of the constructed BH-trees

For the evaluation and the comparison of the quality of BH-trees constructed using

the CV method with those from the IEI and the CNI methods, the average height

of indexes, the average number of internal nodes and the average number of leaves

nodes are plotted, for the four datasets, in figure 6.8. The number of nodes per

level (Figure 6.9) and the data distribution in leaves (Figure 6.10) are determined

after the indexing of all data streams.

180

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

GPS trajectory

Tracking data

WARD

Traffic dataset

0 10 20 30 40 50 700

Average height

 CV method
 IEI method
 CNI method

GPS trajectory

Tracking data

WARD

Traffic dataset

0 500 2000 3000

Average number of internal nodes

 CV method
 IEI method
 CNI method

GPS trajectory

Tracking data

WARD

Traffic dataset

0 500 3000

Average number of leaves nodes

 CV method
 IEI method
 CNI method

Figure 6.8: Average height, average number of internal nodes and average number
of leaves nodes of BH-trees constructed using the CV method, the CNI method
and the IEI method.

6.3.4.1 Average height of BH-trees

Figure 6.8 presents the average height of BH-trees resulting from the indexing of

streams of GPS trajectory, tracking, WARD and traffic datasets. For all datasets,

the average height of indexes constructed using the IEI method is greater than

that of indexes constructed using CNI method. This is due to the fact that in

the IEI method, all data are inserted in constant number of BH-trees while in

the CNI method, for each cluster, a BH-tree is constructed. We can also see, in

figure 6.8, that the average height of indexes constructed using the CV method is

comparable to that of the CNI method for the GPS trajectory and the tracking

datasets while for the WARD and the traffic datasets, the average height from the

CV method is greater than that for the CNI method and slightly surpasses the

average height from the IEI method for the WARD data. The CV method changes

its behaviors as a function of the data stream size and dimension. It behaves like

the CNI method when indexing the GPS trajectory and the tracking datasets and

like the IEI method when indexing the WARD and the traffic datasets.

6.3.4.2 Average number of internal nodes

The average number of internal nodes per BH-tree varies from a dataset to another

as can be seen in figure 6.8. For GPS trajectory, tracking and traffic datasets,

181

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

the average number of internal nodes in indexes constructed using IEI method is

greater than that in indexes constructed using CNI method contrary to the WARD

dataset where the average number of internal nodes in BH-trees constructed using

the CNI method is greater than that in indexes by the IEI method. For all datasets

the average number of internal nodes constructed using the CV method is located

between those of the CNI and IEI method. As awaited, the variation of the average

number of leaves nodes, as a function of the indexing method, is similar to that of

the average number of internal nodes (Figure 6.8).

6.3.4.3 Number of nodes per level

The number of nodes per level in BH-trees constructed using CNI, IEI and CV

methods is traced in figure 6.9 for the four used datasets. As can be seen, the

number of nodes per level varies from the a dataset to another. For the GPS

trajectory, the number of nodes is constant in all levels of the BH-tree whatever

the proposed indexing method. For tracking dataset, the variation of the number

of internal nodes per level changes as a function of the indexing method. For the

IEI method, five levels contain an elevated number of nodes while two levels with

a maximum number of nodes are obtained from the CV method and only one level

of maximum nodes is obtained from indexes by the CNI method. For the WARD

dataset only one level with maximum number of nodes in indexes constructed

using both CNI and IEI methods. The indexes constructed using the CV method

contain two levels of maximum number of nodes. For the traffic dataset, one level

with maximum number of node is obtained from BH-trees constructed using the

CNI and the CV methods. For the IEI methods, three levels have high number of

nodes. The number of nodes remains constant beyond level 25 for the CV mathod

(2 nodes per level) and beyond level 60 for the IEI method (25 nodes per level).

182

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

0 50 100 150 200 250
0,5

1,0

1,5

2,0

2,5 GPS trajectory

N

um
be

r
of

 n
od

es

Level

 CNI method
 IEI method
 CV method

0 10 20 30 40 50 60
0

20

40

60

80

100

120 Tracking dataset

N
um

be
r

of
 n

od
es

Level

 CNI method
 IEI method
 CV method

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800
WARD

N
um

be
r

of
 n

od
es

Level

 CNI method
 IEI method
 CV method

0 50 100 150 200 250
0

10
20
30
40
50
60
70
80
90

Traffic dataset

N
um

be
r

of
 n

od
es

Level

 CNI method
 IEI method
 CV method

Figure 6.9: Variation of the number of nodes per level of BH-trees constructed
using the CNI, IEI and CV methods.

6.3.4.4 Data distribution in BH-tree leaves

The distribution of data in the left and the right sides of the BH-tree is plotted, in

figure 6.10, for CNI, IEI and CV methods. For GPS trajectory dataset, resulting

indexes constructed using both CNI and IEI methods are not balanced while in-

dexes constructed using CV method are well balanced. For the trajectory, WARD

and traffic datasets, indexes from the three proposed methods are well balanced.

We can also see that the data distribution in indexes constructed using the CNI

and IEI methods is similar whatever the used dataset.

183

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

Left side Right side
20

30

40

50

60

70

CNI method

13

14

15

16

17

IEI method

9

18

27

36

45 GPS trajectory

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af
CV method

Left side Right side

50
55
60
65
70
75
80
85

CNI method

30
40
50
60
70
80
90

IEI method

0
10
20
30
40
50
60
70 Tracking dataset

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af

CV method

Left side Right side
100

200

300

400

500

CNI method

100

200

300

400

500

IEI method

0

50

100

150

200
WARD

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af

CV method

Left side Right side
0

200
400
600
800

1000
1200

CNI method

0

200

400

600

800

1000

1200

1400

IEI method

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af

0

200

400

600

800

1000

Traffic dataset

CV method

Figure 6.10: Data distribution in leaves.

6.3.5 Evaluation of the parallel kNN search in BH-trees

For the evaluation of the parallel kNN search with k = 5, 10, 15, 20, 50 and 100 in

BH-trees constructed using CNI, IEI and CV scenarios, the number of distances,

the number of comparisons, the time of search, energy consumption and the num-

ber of visited leaves is determined to search 100 queries. It is to notice that all

statistical results were averaged over 100 randomly generated queries.

184

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

6.3.5.1 Number of calculated distances

The average number of calculated distances during the kNN search with k =

5, 10, 15, 20, 50 and 100 is plotted, in figure 6.11, for the three methods. As can

be seen in figure 6.11, the average number of distances varies from a data to

another. For the GPS trajectory dataset the average number of distances during

the querying search in BH-trees constructed using CNI and CV methods are close

and less than that calculated during the query search in indexes constructed using

the IEI method. This could be correlated with the variation of the average height

of indexes (Figure 6.8) since the number of nodes per level is unvaried for the

GPS trajectory data (Figure 6.9). For tracking and WARD data sets the average

number of distances calculated during the kNN query search in indexes constructed

using the CV method is less than the number of distances in indexes constructed

using CNI and IEI methods.

This can be related to the variation of number of nodes per level (Figure 6.9). For

the tracking dataset and for levels between 5 and 10 the number of nodes from

the CNI method is greater than that from IEI method and that of IEI method is

greater than that the CV method. For the WARD data set, the number of nodes

per level from the IEI method is greater than that from the CNI method which

is greater than the number of nodes per level from CV method. For the traffic

dataset, the number of distances calculated during the query search in indexes

constructed using the CV method is greater than that in indexes by the CNI

method and less than that in indexes by the IEI method. This could be directly

related to the indexes height (Figure 6.8).

185

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

k=5 k=10 k=15 k=20 k=50 k=100
0,0

4,0x102

8,0x102

1,2x103

1,6x103

2,0x103 GPS trajectory

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0

1x103

2x103

3x103

4x103

5x103

6x103

7x103
Tracking dataset

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0,0

5,0x104

1,0x105

1,5x105

2,0x105

2,5x105

3,0x105

3,5x105

4,0x105
WARD

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0,0

2,0x102

4,0x102

6,0x102

8,0x102

1,0x103

1,2x103

1,4x103

1,6x103

1,8x103

Taffic dataset

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

Figure 6.11: Number of distances calculated for the kNN search in BH-trees by
CNI, IEI and CV methods.

6.3.5.2 Number of calculated comparisons

The average number of comparisons calculated during the kNN queries search in

BH-trees constructed using CNI, IEI, CV methods is presented in figure 6.12. A

similar variation is observed for the four dataests.

186

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

k=5 k=10 k=15 k=20 k=50 k=100
0,0

2,0x104

4,0x104

6,0x104

8,0x104

GPS trajectory

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0

1x105

2x105

3x105

4x105

Tracking dataset

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0,0

5,0x106

1,0x107

1,5x107

2,0x107

2,5x107

3,0x107

3,5x107
WARD

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0,0

2,0x105

4,0x105

6,0x105

8,0x105

1,0x106

Traffic dataset

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

Figure 6.12: Number of comparisons calculated for the kNN search in BH-trees by
CNI, IEI and CV methods.

We can see that the average number of comparisons, calculated in indexes con-

structed using the CV method, is less than that in indexes constructed using CNI

and IEI methods. This may due to the fact that the use of the CV method results

in fusion of clusters of similar objects in contrast to the IEI method in which,

heterogeneous objects are inserted in constant number of indexes.

6.3.5.3 Time of search

Figure 6.13 shows the variation of the time of kNN search queries in BH-trees

constructed using CNI, IEI and CV methods. The variation of the time of search

for the three scenarios is related to the variation of both the average number of

187

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

distances (Figure6.11) and the average number of the visited leaves (Figure 6.14).

k=5 k=10 k=15 k=20 k=50 k=100
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

GPS trajectory

T
im

e
of

 s
ea

rc
h

(s
)

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0,00

0,01

0,02

0,03

0,04

Tracking dataset

T
im

e
of

 s
ea

rc
h

(s
)

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0,0

0,2

0,4

0,6

0,8

1,0

1,2

WARD

T
im

e
of

 s
ea

rc
h

(s
)

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0,0

5,0x10 -3

1,0x10 -2

1,5x10 -2

2,0x10 -2

2,5x10 -2

3,0x10 -2

3,5x10 -2

Taffic dataset

T

im
e

of
 s

ea
rc

h
(s

)

 CNI method
 IEI method
 CV method

Figure 6.13: kNN search time of CNI, IEI and CV method.

For the GPS trajectory dataset, the shortest time of search is obtained for indexes

constructed using CNI method where the time of search varies from 0.0016 to

0.0046s when k varies from 5 to 100. For this indexing method, the number

of both the distances and the visited leaves are less then those of the two other

methods. The time of search in indexes constructed using the CV method is nearly

invariant as a function of k and always located between that of both CNI and IEI

methods. The time of search in indexes by the CV method is around 0.0048s.

For tracking and WARD datasets, the CV method presents the shortest time of

kNN query search which varies from 0.008 to 0.02s for the tracking dataset and

188

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

from 0.227 to 0.596s for the WARD dataset when k varies from 5 to 100. For the

traffic dataset, despite the minimum of the time of search correspond to the IEI

method indexes, the search time for the three methods is close. It varies around

0.0137 and 0.0338s when k varies from 5 to 100. The time of search for the traffic

dataset is less than that for the WARD data because the number of visited leaves

for the traffic dataset is less than that for the WARD dataset as can be seen in

figure 6.14. For k = 100 and for tracking data, the time of search in indexes by

the CV method is 46% of that by the CNI method and 69% of that by the IEI

method while for the WARD data, it is 53% and 47% of that by the CNI and the

IEI respectively.

GPS trajectory Tracking data WARD Traffic dataset
0

200

400

1000

A
ve

ra
ge

 n
um

be
r

of
 v

is
ite

d
le

av
es

 CNI method
 IEI method
 CV method

Figure 6.14: Number of the visited leaves in CNI, IEI and CV method.

For traffic dataset, the time of search in indexes by the IEI method is 96% of that

by the CV method and the time of search for the CNI method is 97% of that

by the CV method. In the CV method, when the coefficient of variation (CV)

of the union of a new cluster from the incoming data stream with the existing

first clusters is minimum this means that objects in the two clusters are very

similar. Thus, objects, in the new cluster, are inserted in the index corresponding

to the first cluster which make objects in this index more similar. That is why,

during the kNN query search in the CV method indexes, the number of distances

189

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

and the number of visited leaves are less compared with the other methods. For

the GPS trajectory dataset, the height of indexes influenced directly the search

time because indexes constructed using CV, CNI and IEI methods have a constant

number of nodes per level (Figure 6.9). In ref.[5], Benrazek et al. indexed the whole

above cited datasets in a BCCF-tree. For k = 100,they found 0,16191, 0,21034

and 2,72482s for GPS trajectory, tracking and WARD datasets respectively. For

k = 100, the time of search, obtained by Zhang et al. [283], which is 0.682s for a

data of 1 million is comparable to that of the WARD dataset of 3 millions size.

The improvement of the time of search using our proposed methods came from

the use of DBSCAN clustering algorithm witch results in the creation of clusters

of high similarity.

6.3.5.4 Energy consumption during the kNN search

Figure 6.15 presents the energy consumption during the parallel kNN search with

k = 100 in indexes constructed using CV, CNI and IEI methods. For the four se-

lected datasets, the CNI method consumes energy more than CV and IEI methods.

That was awaited since the use of the CNI method induces the creation of more

indexes. In addition, the use of parallelism induces an energy consumption in all

indexes. The energy consumption during the 100NN search in indexes constructed

using the CV method is comparable to that for the IEI method which reflects its

efficiency during the indexing of continuous data streams.

190

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

CNI method IEI method CV method
0,000
0,005
0,010
0,015
0,020
0,025
0,030

GPS trajectory

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

Tracking dataset

 E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

01020304050607080
WARD

0,00,10,20,30,40,50,60,70,8
Traffic dataset

Figure 6.15: Energy consumption during the 100NN search for CNI, IEI and CV
method.

6.4 Conclusion

According to the comparison of results we conclude, although the kNN search time

in indexes constructed using the CNI and the IEI methods is comparable with that

of the above-cited methods, some of their characteristics are not desirable for con-

tinuous IoT data stream indexing. The CNI method is capable of dynamically

index the continuous IoT data stream; it produces a very large number of indexes.

The construction of these indexes is a high cost process in terms of the number

of distances, the number of comparisons, the time computing and the energy con-

sumption. The large number of indexes increases also, the cost of the number

of distances, the number of comparisons, the time and the energy consumption

of search computing during the kNN query search. In addition, creating a large

191

CHAPTER. 6 CV Method for Indexing Continuous IoT Data

number of indexes leads to the risk of memory overload, which negatively affects

the indexing process of the continuous IoT data. The IEI method allows indexing

the continuous IoT data stream with low computational cost of the number of

distances, the number of comparisons and the time. However, it is not adapted to

continuous IoT data stream. The inclusion of large various elements, from the con-

tinuous incoming data, in a limited number of indexes increases the height of these

last and reduces their similarity since the criterion of insertion is the minimum dis-

tance between the existing and the incoming clusters centers. Increasing the depth

of indexes and reducing their similarity may lead to the increase of the number of

distances, the number of comparisons and the time of kNN search computations.

In addition, inserting large number of elements faces indexes, constructed using

the IEI method to the problem of degradation. Compared with the CNI and the

IEI methods, the CV method presents more capability to, dynamically, index the

continuous IoT data stream. The coefficient of variation (CV) determines whether

the resulting cluster from the union of the existing and the incoming clusters is

similar or dissimilar. If the union of clusters is similar, incoming elements are

inserted in the corresponding existing cluster index and, if the union of clusters in

dissimilar, a new index is constructed from the incoming cluster. Having similar

elements in each index reduces the cost of the computing of the number of dis-

tances, the number of comparisons, the energy consumption and the time of kNN

query search. In addition, creating new indexes, in the case where the union of

clusters is not similar, makes this method an appropriate approach for indexing

continuous IoT data stream. By using the CV method, we avoid the problem of

the infinite number of indexes and the degradation of the indexes and we guarantee

the construction of new indexes with low energy consumption and without data

overlap.

192

7 TD Method for Indexing Contin-

uous IoT Data

7.1 Introduction

In the previous chapter, we presented a new approach to index the continuous

IoT data stream using the Coefficient of Variation (CV) method. We propose, in

this chapter, a new method to index continuous IoT data flow taking the benefit

from the fog-cloud architecture. The proposed method, called Threshold Distance

(TD) is a two step process. The first process consists on the grouping of the

arrival data flow into homogeneous clusters by means of the DBSCAN algorithm

[119]. The second process is the construction of GHT (Generalized Hyperplane

Tree) [220],[262] for each cluster. The clusters of the first data flow are directly

indexed while for those of the next data flows, they will be indexed or inserted in

existing GHT after comparing the distances between their centers and the existing

clusters centers to a threshold distance value. To test the efficiency of this proposed

method, the experimental results will be compared to those of our second proposed

method, in this chapter, called Creation of a New Tree (CNT) in which, a new

GHT is constructed for each arrival cluster.

The present chapter starts with a detailed description of the proposed approach

193

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

followed by the exposition of the experimental results of the GHTs construction

and those of the kNN query search. The experimental results of both the GHTs

construction and the kNN query search will be discussed and compared with those

of the CNT index.The experimental results of the kNN search will be also compared

with those of the CV method presented in the previous chapter.In the last, The

experimental results of the kNN search will be also compared with those of the

B3CF-trre method presented in the previous chapter.

Te
rm

in
al

la

ye
r

Fo
g

la
ye

r
C

lo
u

d

la
ye

r

C’1
C’2

C’3
C’4

C’5

C2

C1

C3
C4

C5

C6C7

C8

Figure 7.1: Architecture of TD method.

7.2 Proposed Approach

In an IoT environment, data is continuously sent from multiple devices to data

warehouses in the cloud. In this approach, before sending data directly to the

cloud, we first process it in the fog layer. Because our proposed approach is a two

step process, the fog layer is divided into two levels: the clustering fog level and

the indexing fog level (Figure 7.1).

194

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

The first process, which takes place in the clustering fog level, consists on the

grouping of each data flow Fl, of center CF l into n clusters using the DBSCAN

algorithm [119] This results in clusters of high homogeneity and high density with

centers Cn (Algorithm 9). In the second step, in the indexing fog level, a GHT

(Generalized Hyperplane Tree) [220],[262] is constructed for each cluster Cl of

the first data flow. For the next data flows Fl
′ of a center C

′

Fl′
, each resulting

cluster Cl
′ of a center C

′
n′ will be indexed or inserted in an existing GHT after

the comparison of the minimum distances between C
′
n′ and the centers of the first

clusters dmin(Cn, C
′

n′) to the threshold distance value TD. The threshold distance

TD is determined as the average distance between the next data flow center C
′

Fl′

and the centers of the first data flow clusters Cn. If dmin(Cn, C
′

n′) > TD, a new

GHT is constructed and the cluster center C
′
n′ is added to the first data flow

clusters centers Cn. If dmin(Cn, C
′

n′) ≤ TD, object of the cluster Cl
′ are inserted

in the GHT which correspond to the cluster center Cn.

195

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

Algorithm 9 TD method
Require: Fl //Data flow
Ensure: GHTs

// Clustering of the first data flow
if Cl = ∅ then
(n,Cln)← DBSCAN(Fl)
//n:number of clusters. Cln: set of clusters cl
for cl ∈ Cln do

Cn ←Calculate center(cl)
//Cn: set of clusters centers cn

end for
// Indexing of the first clusters Cln
for cl ∈ Cln do
GHT ← Build(cl)

end for
else if Cl ̸= ∅ then
Fl

′ ← Fl
//Fl

′ : next data flow
//Calculation of the center of the next data flow
C′

Fl′
←Calculate center(Fl′)

//Clustering of the next data flow
(n

′
, Cl

′

n′)← DBSCAN(Fl
′
)

//n′ :number of next clusters. Cl
′

n′ : set of next clusters cl
′

for cl
′ ∈ Cl

′

n′ do
C

′

n′ ←Calculate center(cl′)
// C

′

n′ : set of next clusters centers c
′

n′

end for
//Calculation of the threshold distance TD
TD←mean(distance(C ′

Fl′
,Cn))

for each cl
′ ∈ Cl

′

n′ do
for each cl ∈ Cln do

if dmin(cn, c
′

n′) > TD then

GHT ← Build(cl)
Add cl

′ to Cln
else

Insert objects of cl′ in GHT (cn)
end if

end for
end for

end if

196

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

To check the efficiency of the proposed TD method, the experimental results, in

the next section, will be compared to another proposed method extracted from

the TD method. We call this method Creation of a New Tree (CNT) and it is

also developed in the same fog-cloud architecture. In this method, as its name

indicates, a new GHT is constructed for every arrival cluster. The CNT method

is described in the algorithm 10.

Algorithm 10 CNT method
Require: Fl //Data flow
Ensure: GHTs

// Clustering of the first data flow
(n,Cln)← DBSCAN(Fl)
//n:number of clusters. Cln: set of clusters cl
for cl ∈ Cln do
GHT ← Build(cl)

end for
Fl

′ ← Fl
//Fl

′ : next data flow
(n

′
, Cl

′

n
′)← DBSCAN(Fl

′
)

//n′ :number of next clusters. Cl
′

n′ : set of next clusters cl
′

for cl
′ ∈ Cl

′ do
GHT ← Build(cl

′
)

end for

7.3 Simulation and Results

Experiments were implemented using Python programming language installed on

an Intel® CoreTM i7-8550u, 1.80 GHz processor*8 with 16 GB RAM, 256 GB

SDD ROM under 64-bit Linux operating system (Ubuntu). To evaluate our pro-

posed TD method by comparing with our CNT method, two real datasets were

used. The tracking dataset contains 6.27k vectors of dimension 20 [5] and the

smart home data contains 10M vectors of dimension 4 [275]. For the simulation

of data flows, both datasets were divided into subsets considered as flows. The

197

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

characteristics of these data flows are regrouped in Table 7.1.

Table 7.1: Characteristics of the used data flows.

Dataset Dimension Number
of flows

Vectors
per flow

Tracking
dataset 20 6 1.04k

Smart
home 4 5 2M

For the experimental results, the evolution of the number of GHTs, the evaluation

of GHTs construction and the evaluation of the parallel kNN search in these indexes

will be presented and analyzed, as function of the data flow, for the proposed TD

method. The results from our CNT method will be used for the comparison with

the TD method.

7.3.1 Evolution of the number of GHT

Figure 7.2 presents the evolution of the number of the constructed GHT as a

function of the data flow. We can see that the number of GHT is mainly constant

when using the TD method and increases proportionally to the data flow when

using the CNT method. The use of the TD method results in the construction

of 17 GHT for tracking dataset and 7 GHT for smart home data while for the

CNT method, 84 GHT were constructed for the tracking dataset and 35 GHT for

the smart home data. This indicates that the TD method reduces considerably

the number of constructed indexes when compared with the CNT method.In CNT

method,with each new data flow, new GHT are produced, meaning that their

number is constantly increasing, but In TD, despite the increase in the number of

data flow, the number of indexes remains stable.

198

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

Flow1 Flow2 Flow3 Flow4 Flow5 Flow6
10
20
30
40
50
60
70
80
90

100
Tracking dataset

N
um

be
r

of
 G

H
T

Data Flow

 CNT method
 TD method

Flow1 Flow2 Flow3 Flow4 Flow5

5

10

15

20

25

30

35 Smart Home data

N
um

be
r

of
 G

H
T

Data Flow

 CNT method
 TD method

Figure 7.2: Evolution of the number of GHT as a function of the data flow.

7.3.2 Evaluation of GHT construction

For the evaluation of GHT construction, the computed distances, the computed

comparisons and the construction cost will be presented as a function of the data

flow.

7.3.2.1 Computed distances

From the second flow, and for both used datasets, the computed distances of the

CNT method are much higher than those of the proposed TD method (Figure

7.3). This is due to the fact that, during index construction, many distances are

calculated for pivots determination and also, for objects inserted in the left or in

the right side. This is not the case for objects insertion since there is no pivots

calculation.

199

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

Flow1 Flow2 Flow3 Flow4 Flow5 Flow6
0,0

2,0x105

4,0x105

6,0x105

8,0x105

1,0x106

1,2x106

1,4x106

1,6x106

11
6

81
6

Tracking dataset

C
om

pu
te

d
di

st
an

ce
s

Data Flow

 CNT method
 TD method

Flow1 Flow2 Flow3 Flow4 Flow5
0,0

5,0x107

1,0x108

1,5x108

2,0x108

2,5x108

3,0x108

Smart Home data

C
om

pu
te

d
di

st
an

ce
s

Data Flow

 CNT method
 TD method

Figure 7.3: Computed distances the TD method and the CNT method as a function
of the data flow.

7.3.2.2 Computed comparisons

As for the computed distances, the computed comparisons for both datasets are

greater in the CNT method than those in the TD method (Figure 7.4). This

reflects the efficiency of the TD method since it combines the insertion process

and the construction process depending on the threshold distance value. For the

fifth and the sixth tracking data flows, the lowest computed comparisons using the

TD method indicates that the whole objects were inserted in existing GHT.

7.3.2.3 Computing time

Figure 7.5 presents the computing time of the TD and CNT methods, for both

datasets, as a function of the data flow. For the tracking dataset, the computing

time of the TD method is better than that of the CNT method while for the smart

home data, the situation is unversed, the computing time of the CNT method is

better than that of the TD method in spite of the good results of the TD method

concerning the computed distances (Figure 7.3) and the computed comparisons

(Figure 7.4). Two parameters influence considerably the obtained results: the

200

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

Flow1 Flow2 Flow3 Flow4 Flow5 Flow6
0

1x105

2x105

3x105

4x105

5x105

6x105

7x105

5840
8

Tracking dataset

C
om

pu
te

d
co

m
pa

ris
on

s

Data Flow

 CNT method
 TD method

Flow1 Flow2 Flow3 Flow4 Flow5
0,0

2,0x107

4,0x107

6,0x107

8,0x107

1,0x108

1,2x108

1,4x108 Smart Home data

C
om

pu
te

d
co

m
pa

ris
on

s

Data Flow

 CNT method
 TD method

Figure 7.4: Computed comparisons for the TD method and the CNT method as
a function of the data flow.

Flow1 Flow2 Flow3 Flow4 Flow5 Flow6
0

5

10

15

20

25

30

35

40
Tracking dataset

C
om

pu
tin

g
tim

e
(s

)

Data Flow

 CNT method
 TD method

Flow1 Flow2 Flow3 Flow4 Flow5
0,0

2,0x103

4,0x103

6,0x103

8,0x103

1,0x104

Smart Home data

C
om

pu
tin

g
tim

e
(s

)

Data Flow

 CNT method
 TD method

Figure 7.5: Computing time for CNT method and TD method for each data flow.

number and the mean height of indexes. In figure 7.6 is traced the mean height

of indexed, for both datasets, constructed using the TD method and the CNT

method. As can be seen, in figure 7.6-a, the mean height of GHT constructed using

the TD method is greater than that of GHT constructed using the CNT method

for both datasets. However, what makes the difference is the global number of

GHT as it is shown in figure 7.6-b. Indeed, according to the figure 7.6-b, the

201

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

Tracking dataset Smart home data
0

50
100
150
200
250

1400

1500

1600
a)

G
H

T
 m

ea
n

he
ig

ht

 TD method
 CNT method

Tracking dataset Smart home data
0

20

40

60

80 b)

G
lo

ba
l n

um
be

r
of

 G
H

T

 TD method
 CNT method

Figure 7.6: Mean height (a) and global number of GHT (b), for both used datasets,
using the TD and the CNT methods.

mean height of GHT constructed using the CNT method is less than that of GHT

constructed using the TD method because the global number of GHT constructed

using the CNT method is much higher than that using the TD method.

7.3.3 Evaluation of parallel kNN search

For the evaluation of parallel kNN search with k = 5, 10, 15, 20, 50 and 100 in GHT

constructed using our proposed TD method, distances, comparisons and time of

kNN search will be computed to reach 100 queries. To test the efficiency of the

kNN search in GHT constructed using the TD method, results will be compared

with those of the kNN search in GHT constructed using the CNT method.

7.3.3.1 Distances in parallel kNN search

Figure 7.7 shows the distances computed during the parallel kNN search with

k = 5, 10, 15, 20, 50 and 100 in GHT constructed using the TD method and the

CNT method. We can see that, for both datasets, the computed distances using

the TD method are less than those computed using the CNT method. This is

202

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

0 5 10 15 20 50 100

1x105

2x105

3x105

4x105

5x105

6x105

7x105

8x105

Tracking dataset

D
is

ta
nc

es
 in

 k
N

N
 s

ea
rc

h

k

 CNT method
 TD method

0 5 10 15 20 50 1001,2x104

1,4x104

1,6x104

2,8x104

3,0x104

3,2x104

3,4x104
Smart Home data

D
is

ta
nc

es
 in

 k
N

N
 s

ea
rc

h

k

 CNT method
 TD method

Figure 7.7: Computed distances during kNN search in indexes constructed using
the TD method and CNT method.

because, in the TD methods, objects in clusters are inserted in GHT of the closest

clusters while in the CNT method, in spite of the closeness of clusters, a GHT is

constructed for each one.

7.3.3.2 Comparisons in parallel kNN search

As awaited, the computed comparisons during the kNN search in indexes con-

structed using the TD method present the lowest number compared with the CNT

method (Figure 7.8). This reflects the efficiency of the TD method which allows in-

sertion of objects in some conditions related to the threshold distance. For k > 50,

the computed comparisons of the CNT method increased considerably compared

with the computed comparisons of the TD method which proves, an other time,

the efficiency of the TD method for indexing continuous data flow.

7.3.3.3 Time of kNN search

In figure 7.9 is traced the time of parallel kNN search with k = 5, 10, 15, 20, 50

and 100 in GHT constructed using the TD method and the CNT method. We

can see that the time of kNN search in the TD method GHT is better than that

203

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

0 5 10 15 20 50 100
0

1x107

2x107

3x107

4x107

Tracking dataset

C
om

pa
ris

on
s

in
 k

N
N

 s
ea

rc
h

k

 CNT method
 TD method

0 5 10 15 20 50 100

0,0

5,0x105

1,0x106

1,5x106

2,0x106

2,5x106

3,0x106

3,5x106

Smart Home data

C
om

pa
ris

on
s

in
 k

N
N

 s
ea

rc
h

k

 CNT method
 TD method

Figure 7.8: Computed comparisons during kNN search in indexes constructed
using the TD method and CNT method.

in the CNT method what confirms the efficiency of the TD method for processing

the continuous data flow. For k < 30, the time of kNN search in the TD method

GHT is less than that of the CNT method by 22% for the tracking dataset and

by 45% for smart home data. This difference changes for k = 100. The time

of the kNN search for the TD method is less than that for the CNT method by

32% for the tracking dataset and by 47% for the smart home data. Even the TD

method surpasses the CNT method, it proves its efficiency when comparing with

the BCCF-tree [5] and the IWC-tree[5] in which, the whole dataset was indexed

in one tree. The TD method is largely surpassed by the B3CF-tree in which,

parallelism was used in data indexing and in kNN similarity query search.

204

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

0 5 10 15 20 50 100

1,5x10 -2

2,0x10 -2

2,5x10 -2

3,0x10 -2

3,5x10 -2

4,0x10 -2

4,5x10 -2 Tracking dataset

T
im

e
of

 k
N

N
 s

ea
rc

h
(s

)

k

 CNT method
 TD method

0 5 10 15 20 50 100
0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10
Smart Home data

T
im

e
of

 k
N

N
 s

ea
rc

h
(s

)

k

 CNT method
 TD method

Figure 7.9: Time of kNN search in GHT constructed using the TD method and
the CNT method.

It is to notice that, in order to make the comparison with the TD method, the

implementation results for the BCCF-tree and the IWC-tree were obtained after

computing using our own machine.

7.3.3.4 Comparison of the time of kNN search between CV and TD

method

k=5 k=10 k=15 k=20 k=50 k=100
0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,
00

00
51

98
12

0,
00

00
51

98
12

0,
00

00
51

98
12

0,
00

00
54

43
73

0,
00

00
40

69
09

0,
00

00
34

55
33

Tracking dataset

T
im

e
of

 s
ea

rc
h

(s
)

 CV
 TD

Figure 7.10: Time of search in CV and TD method.

205

CHAPTER. 7 TD Method for Indexing Continuous IoT Data

For the tracking dataset, the only common dataset in testing CV and TD methods,

the time of the kNN search for k = 100 was 0.029s for the TD method. The

comparison of the parallel kNN search in indexes constructed using the CV method

and the TD method is presented in figure 7.10 for the tracking dataset. As can

be seen, the CV method surpasses the TD method. The time of kNN search for

k = 100 is 0.02s. The parallel kNN search time presents the same evolution as a

function of the parameter k for both methods. However, the TD method depend

strongly on the threshold distance determination method which presents a serious

limitation when indexing continuous IoT data.

7.4 Conclusion

In order to index the continuous IoT data flow, an efficient method, called threshold

distance (TD) is proposed in this chapter. This method, developed in the fog-

cloud architecture, is a two step process. In the first process, which takes place

in the clustering fog level, the data flow is grouped into clusters by means of the

DBSCAN algorithm. In the second process, in the indexing fog level, data of

each cluster is inserted in an existing GHT or a new GHT is constructed after a

comparison of the distance between the centers of the first cluster and the next

clusters to a threshold distance value. To check the efficiency of the TD method,

it was compared to an other method called the creation of a new tree (CNT).

The experimental results showed that both methods are efficient compared with

two other indexing methods. The experimental results showed also, that even the

TD method surpassed the CNT method during the construction of GHT and the

parallel kNN search, it seems insufficient in front of the CV method in term of the

time of kNN query search.

206

8 Parallel kNN Search in QCCF-tree

Nodes

8.1 Introduction

In these previous propositions, the enhancement of the efficiency of the kNN query

search, in indexes, by the introduction of parallelism allowed by the use of DB-

SCAN clustering algorithm, as a pre-indexing process, was evidenced. However,

what about the use of parallelism in the inner of indexes? To response to this

question, a new index called Quad-tree based on Containers at the Cloud-Fog

computing level (QCCF-tree) inspired from the BCCF-tree [5] is proposed. It is

constructed in metric space where the data is divided into four balls with four

pivots. The choice of four pivots is to eliminate data overlapping and index de-

generation problems. For the speed up of the kNN query search, parallelism is

used in the inner of the QCCF-tree i.e. in the QCCF-tree nodes. The present

chapter starts with a detailed description of the proposed approach followed by

the exposition of the experimentation and the evaluation the construction and the

kNN query search results of the proposed QCCF-tree by making a comparison

with the results of our proposed B3CF-tree and those of some existing indexes

namely BCCF-tree [5], IWC-tree [5], MX-tree [247] and BB-tree [176],[201].

207

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

FOG layer | Nodes

Fog

Fog

Accelerators

Network

Control

Storage

Accelerators

Network

Control

Storage

Computation

Te
rm

in
al

 la
ye

r
|

Io
T

Se
n

so
rs

 &
 A

ct
u

at
o

rs

Analysis Service

Monitor Batch

Scheduler

Auto-scaling

Computation

Computation

Data Analysis

Storage

CLOUD layer | Data Centers

Figure 8.1: Cloud-fog computing architecture.

8.2 Proposed Approach

In spite of the efficiency of the BCCF-tree [5] in large-scale data indexing, it

presents an elevated time of construction compared with other indexes such as

BB-tree [176] and MX-tree [247]. In this section, we have investigated the char-

acteristics of the cloud-fog architecture for the construction of our index called

Quad-tree based on Containers at the Cloud-Fog computing level (QCCF) sup-

posed to be the improvement of the BCCF-tree. Our system architecture, similar

to that of the BCCF-tree [5], consists of three layers (Figure 8.1): the IoT devices

layer (or terminal layer), the fog layer, and the cloud layer. The terminal layer

sends the data generated by the interconnected IoT devices to the fog layer. The

fog nodes are close to the IoT devices and have the ability to compute and store

the data. In this approach, data is indexed and the QCCF-tree is constructed in

the fog layer. The leaves of the nodes in the constructed QCCF-tree are stored

in the cloud layer. The QCCF-tree is based on the division of the space, in the

fog layer, into four non-overlapped sub-spaces (or partitions). The creation of four

partitions follows a two-step process (Figure 8.2): In the first step, the space is

divided into two regions, left and right, by choosing the two farthest objects as left

208

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

pivot pL and right pivot pR. In the second step, each region is divided in turn into

two partitions top and bottom. Pivots are always chosen as the farthest objects.

This partitioning process results in the creation of four balls with pivots p1, p2, p3

and p4.

We define the QCCF-tree nodes N (Figure 8.2) as follow:

P1

PR

rl

rR

Left region

Right region

o5

o8

o6

o3

o7

o4
o9

o10

o12

o11

o13

o16

o18

o14

o15

Step 1

r0

(H0)

o17

o14

r2

Top left

o10

P2

Step 2 (H0)

(HL)

o18

o5

o13

o11

(HR)

P1

o6

o1o12

rl

o16

P3

P4
o3

o4
r3

r4

Bottom left

Top right

Bottom right

rl2
r34

o9

o17

Figure 8.2: Partitioning of space in QCCF-tree.

• L leaf node- consists of a subset indexed objects:EL ⊆ E where |EL| ⩽ cmax

the contents of the leaves partitions E.

• N Internal node is a duodecuple :

(p1, p2, p3, p4, r1, r2, r3, r4, r12, r34, N1, N2, N3, N4) ∈ O4 × R6 ×N4.

where :

r12 = d(p1, p2) lets to define two balls B1(p1, r12) and B2(p2, r12), centered on

p1 and p2 respectively and having a common radius value, large enough for

the two balls to have a nonempty intersection.

r34 = d(p3, p4) lets to define two balls B3(p3, r34) and B2(p2, r34), centered on

p3 and p4 respectively and having a common radius value, large enough for

the two balls to have a nonempty intersection.

(r1, r2, r3, r4) are the distances to the farthest object in the subtree rooted

209

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

at that node N with respect to p1 , p2,p3 and p2 respectively.

r12 = d(p1, p2)

r34 = d(p3, p4)

(N1, N2, N3, N4) are four subtrees, such that:

N1 = {o ∈ N : d(p1, o) ≤ d(p2, o) ≤ d(p3, o) ≤ d(p4, o)}

N2 = {o ∈ N : d(p2, o) < d(p1, o) < d(p3, o) < d(p4, o)}

N3 = {o ∈ N : d(p3, o) ≤ d(p4, o)) ≤ d(p1, o) ≤ d(p2, o)}

N4 = {o ∈ N : d(p4, o) < d(p3, o) < d(p1, o) < d(p2, o)}

The construction of the QCCF-tree is presented in the algorithm 11.

8.2.1 QCCF-tree build

In the incremental process of the QCCF-tree construction, the insertion of objects

is done from top to bottom. The formal description of the QCCF-tree construction

process is presented in algorithm 1. Initially, the tree is empty and is considered as

a leaf. The farthest two-pivot search algorithm is used for all objects to divide the

space into two regions (left and right). After that, this algorithm is used, first, for

objects in the left region to divide them into two partitions (top and bottom) with

pivots p1 and p2 and, second, for objects in the right region to divide them into

two partitions (top and bottom) with pivots p3 and p4. As a result, the container

is divided into four non-overlapped subsets so that each element in the container

belongs to its nearest pivot. This transforms the leaf into an internal node with

four pivots p1,p2,p3 and p4 that create four leaf nodes (Figure 8.2).

210

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

Algorithm 11 Construction of QCCF-tree
Build QCCF (S ∈ P()) ∈ N

with:
(p1, p2, p3, p4)= The four farthest pivots

≜

⊥ ifS = ∅
(e,⊥,⊥,⊥) ifS = {e}

p1, p2, p3, p4
BuildQCCF : ({e ∈ S : d(p1, e) ⩽ d(p2, e) ⩽ d(p3, e) ⩽ d(p4, e)} \ {p1})
BuildQCCF : ({e ∈ S : d(p2, e) < d(p1, e) < d(p3, e) < (p4, e)} \ {p2})
BuildQCCF : ({e ∈ S : d(p3, e) ⩽ d(p4, e) ⩽ d(p1, e) ⩽ d(p2, e)} \ {p3})
BuildQCCF : ({e ∈ S : d(p4, e) < d(p3, e) < d(p1, e) < d(p2, e)} \ {p4})

 else

8.2.2 Parallel kNN search in QCCF-nodes

Parallelism is used, in this approach, for the minimization of the time of the

similarity search query process. Contrary to all indexing trees, parallelism is done

in the QCCF-nodes level because of the presence of four pivots in each internal

node, which may increase the time of the sequential kNN search process. The

formal description of the kNN search in each QCCF-node is presented in algorithm

12. In each internal QCCF-node, kNN search is performed in the left region (with

pivots p1 andp2) and the right region (with pivots p3 and p4) in parallel. The aim

of the k-nearest neighbor search is to find the set A of objects closest to a query

point q. The set A represents the fusion of the set A12 (in the left region) and

the set A34 (in the right region). The kNN search algorithm starts with a query

radius rq = min(rq12, rq34) where rq12 is the query radius in the left region, and

rq34 is the query radius in the right region. Both radius are initialized to +∞

which should lead to scanning the dataset and then decreases by traversing each

node which corresponds to the distance to the kth object in the ordered list A12

and the ordered list A34 respectively. Comparing d1(q, p1) and d2(q, p2) with rq12

and d3(q, p3) and d4(q, p4) with rq34 indicates the descent of the query point in

the index. The leaf nodes contain a subset of the indexed data with a maximum

211

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

Algorithm 12 Parallel kNN search in QCCF-nodes.

kNN-QCCF

N ∈ N,
q ∈ Rn,
k ∈ N∗,
d : O× O→ R+,
rq ∈ R+ = +∞,
A ∈ (R+ × O)N = ∅

 ∈ (R+ × O)N

with :
• A12 = kNN−QCCF (L, q, k, d, rq12, k−insert(A12, ((d(p1, q), p), d(p2, q), p)))

• A34=kNN−QCCF (R, q, k, d, rq34, k− insert(A34, ((d(p3, q), p), d(p4, q), p)))

• rq12 = max{d : (d, o) ∈ A12} if |A12| = k

• rq34 = max{d : (d, o) ∈ A34} if |A34| = k

• rq = min(rq12, rq34)

• A = A12 ∪ A23

∆
=

A, if(N =⊥)
A12, if(N = (p, r, L,R) ∧ d(q, p1) < rq12 ∧ d(q, p2) < rq12) ∥
A34, if(N = (p, r, L,R) ∧ d(q, p3) < rq34 ∧ d(q, p4) < rq34)

cardinal cmax. To find the k nearest neighbors of a leaf, we simply sort the indexed

data according to their increasing distances to the query q. As a result of the

search, the first k sorted objects in the list A are returned.

8.3 Simulation and Results

To perform our experiments, two datasets of different sizes and dimensions are

used.

1. Geographical coordinate database: a real dataset of 988 2D vectors. It con-

tains BD-L-TC topographic data of selected locations and places [270].

2. Tracking of a moving object: a real dataset of 62702 20D vectors. It repre-

sents the results of a random simulation of tracking a moving object using

wireless cameras [5].

212

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

The experiments were performed using the Python programming language in-

stalled on an Intel ® CoreTM i7-8550u CPU, 1.80 GHz*8 processor with a 16 Gb

RAM, a 256 Gb SDD ROM and 64-bit Linux operating system (Ubuntu). The

aim of the experiments is to analyze the effectiveness of the proposed QCCF-tree

index construction and query response by comparing our results to those obtained

with the following index structures:

• BCCF-tree (Binary tree based on containers at the cloud-fog computing

level) [5]: this index is based on recursive space partitioning using k-means

clustering algorithm to efficiently separate the space into two subspaces.

• IWC-tree (Indexing tree without containers) [5]: The comparison of our

results with those of this index can show the effectiveness of using containers

in binary trees.

• MX-tree [247]: The comparison of our results with those of this index can

highlight the difference between hyperplane and ball partitioning in metric

space.

• BB-tree (Bubble Buckets tree) [176]: A comparison with our proposed index

will show the difference between the metric space structure and the multidi-

mensional space structure.

8.3.1 Evaluation of the QCCF-tree construction

In this section, the evaluation of the construction of the QCCF-tree, wil be done by

evaluating the number of computed distances(Figure 8.3), the number of compar-

isons(Figure 8.4), and the construction time (Figure 8.5). The size of the container

in the QCCF-tree is set as cmax =
√
n.

213

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

8.3.1.1 Number of calculated distances

As can be seen, in figure 8.3, the number of calculated distances varies from a data

to another. However, for both used data, the minimum number of distances is

calculated for the BB-tree while the maximum number of distances is calculated

for the IWC-tree. This is awaiting from these two indexes since the BB-tree is based

on multidimensional space partitioning without distances calculation and, in the

IWC-tree, the indexing is done for the whole objects in the data. The proposed

QCCF-tree exhibits the lowest number of distances compared with the BCCF-tree

and the IWC-tree, for tracking dataest. For the geographical coordinates data, the

number of the calculated distances in the QCCF-tree is close to that of the MX-

tree. Partially indexing of data in containers diminished considerably the number

of distances when compared with the IWC-tree. For the geographical coordinates

data, the number of distances computed in the BCCF-tree is comparable to that

computed in the IWC-tree and this may be due to the use of k-means algorithm

for the determination of the two pivots in the BCCF-tree.

QCCF-tree BCCF-tree BB-tree MX-tree IWC-tree
0,0

5,0x103

1,0x104

1,5x104

20

Geographical Coordinates

N
um

be
r

of
 D

is
ta

nc
es

Index structure

QCCF-tree BCCF-tree BB-tree MX-tree IWC-tree
0,0

4,0x106

8,0x106

1,2x107

1,6x107

2,0x107

18

Tracking Dataset

Figure 8.3: Number of distances of QCCF-tree, BCCF-tree, BB-tree, MX-tree and
IWC-tree.

214

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

8.3.1.2 Number of comparisons

The number of comparisons is presented, in figure 8.4, for the selected indexes. One

can see that the number of comparisons calculated for our proposed QCCF-tree is

the lowest compared with the other indexes which indicates its efficiency. Indeed,

the division of data into four subsets, in the container, results in the creation

of subsets containing closest objects which induces the reduction of the number

of comparisons. Contrary to the number of distances, the BB-tree exhibits the

elevated number of comparison.

QCCF-tree BCCF-tree BB-tree MX-tree IWC-tree
0,0

5,0x103
1,0x104
1,5x104
2,0x104
2,5x104
3,0x104

20

Geographical Coordinates

N
um

be
r

of
 C

om
pa

ris
on

s

Index structure

QCCF-tree BCCF-tree BB-tree MX-tree IWC-tree
0,0

4,0x106

8,0x106

1,2x107

88710 18

Tracking Dataset

Figure 8.4: Number of comparisons calculated of QCCF-tree, BCCF-tree, BB-tree,
MX-tree and IWC-tree.

8.3.1.3 Construction time

The variation of the construction time of the chosen index structures is presented in

figure 6.6. For the tracking dataset, the construction time of our proposed QCCF-

tree is lower than that of the BCCF-tree and the IWC-tree and, it is comparable to

those of the BB-tree and the MX-tree. For the geographical coordinates data, the

construction time of the proposed QCCF-tree is close to that of the BCCF-tree,

where the difference of the time is about 0.015 second, and is greater than those

of the BB-tree, the MX-tree and the IWC-tree with a difference of time around

215

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

0.04 second.

According to the results of the number of distances, the number of comparisons

and the low difference in the construction time, the proposed QCCF-tree could be

considered as a competitive structure for in-fog IoT data indexing.

QCCF-tree BCCF-tree BB-tree MX-tree IWC-tree
0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07

Geographical Coordinates

C
on

st
ru

ct
io

n
tim

e
(s

ec
on

d)

Index structure

QCCF-tree BCCF-tree BB-tree MX-tree IWC-tree
0

10
20
30
40
50
60 Tracking Dataset

Figure 8.5: Construction time of QCCF-tree, BCCF-tree, BB-tree, MX-tree and
IWC-tree.

8.3.2 Evaluation of the in-node parallel kNN search

For the evaluation of the in-node parallel kNN search of similarity query, the

number of distances, the number of comparisons and the search time , for both

used datasets, are taken as the average of 100 queries. The variation of these three

characteristics as a function of the parameter k, where k = 5, 10, 15, 20, 50 and

100, are compared with the results of the BCCF-tree, the BB-tree, the MX-tree

and the IWC-tree .

8.3.2.1 Number of calculated distances

For both used datasets, the calculated number of distances in the proposed QCCF-

tree is less than that of the other structures (Figure 8.6) which reflects the efficiency

216

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

of the use of four balls with four pivots for data partitioning and the parallelism

when browsing the index during the similarity query search. For the geographical

coordinates data, the number of distances, calculated in the QCCF-tree, increases

from 44, for k = 5, and stabilises at 55 from k = 20. For the tracking dataset, the

number of distances, calculated for the QCCF-tree, increased without stabilizing.

However, the ratio between the number of distances for k = 5 and that for k = 100,

which is 78%, indicates that the number of distances nearly invariant as a function

of the parameter k.

k=5 k=10 k=15 k=20 k=50 k=100
0

2

4

6

8

10

Geographical Coordinates

555555544944

N
um

be
r

of
 d

is
ta

nc
es

 (
x1

0
4) QCCF-tree

 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

1

2

3

4

5

6 Tracking data

55
60

50
20

46
20

45
30

44
40

43
40

N
um

be
r

of
 d

is
ta

nc
es

 (
x1

0
6) QCCF-tree

 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

Figure 8.6: Number of distances calculated for the kNN search in QCCF-tree,
BCCF-tree, BB-tree, MX-tree and IWC-tree.

8.3.2.2 Number of calculated comparisons

In figure 8.7, is presented the calculated number of comparisons as a function of the

parameter k. Like for the number of distances, the QCCF-tree exhibits the lowest

number of comparisons compared with the other indexes. This also confirms the

efficiency of our proposed index in the similarity query search. For the geographical

coordinates, the calculated number of comparisons, in the QCCF-tree, increases

from 84, for k = 5 and stabilises at 139 beyond k = 15. For the tracking dataset,the

calculated number of comparisons, in the QCCF-tree, increases by a magnitude of

217

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

10 from k = 5 (20.239 × 103) to k = 100 (26.4251 × 104). For the same dataset,

the number of comparisons, in the QCCF-tree represents 15% of the number of

comparisons, in the BCCF-tree, for k = 5 and 13% for k = 100.

k=5 k=10 k=15 k=20 k=50 k=100
0

2

4

6

8

10

13
9

13
9

13
9

13
9

12
4

84

Geographical Coordinates

N
um

be
r

of
 c

om
pa

ris
on

s
(x

10
4) QCCF-tree

 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

1

2

3

4

5

6
Tracking data

26
42

51

16
34

87

74
99

1

57
66

9

39
42

9

20
23

9

N
um

be
r

of
 c

om
pa

ris
on

s
(x

10
6) QCCF-tree

 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

Figure 8.7: Number of comparisons calculated for the kNN search in QCCF-tree,
BCCF-tree,BB-tree, MX-tree and IWC-tree.

8.3.2.3 Time of search

The efficiency of an index could be evaluated from the data retrieve time. The

in-node parallel kNN search time in the proposed QCCF-tree is plotted, in figure

8.8, with the search time of the BCCF-tree, the BB-tree, the MX-tree and the

IWC-tree as a function of the parameter k.

As can be seen, in figure 8.8, the search time in the QCCF-tree has the lowest

value compared with the other indexes. This was awaited after the evaluation

of the number of distances and the number of comparisons where the in-node

parallel search efficiency was evidenced. For the geographical coordinates data,

the kNN search time, in the QCCF-tree, is mainly invariant, as a function of the

parameter k, with a mean value of 0.0013s which is less than the search time, in

the BCCF-tree (0.0025s for k = 5).

218

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

For the tracking dataset, the kNN search time, in the QCCF-tree, is also invarient

as a function of the parameter k.

k=5 k=10 k=15 k=20 k=50 k=100
0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,10
0,11 Geographical Coordinates

T
im

e
of

 s
ea

rc
h

(s
ec

on
d)

 QCCF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

k=5 k=10 k=15 k=20 k=50 k=100
0

5

10

15

20

Tracking data

0,
02

90
1

0,
02

41
5

0,
01

96
1

0,
02

01

0,
01

74
3

0,
01

82
9

T
im

e
of

 s
ea

rc
h

(s
)

 QCCF-tree
 BCCF-tree
 BB-tree
 MX-tree
 IWC-tree

Figure 8.8: Time of kNN search in QCCF-tree, BCCF-tree, BB-tree, MX-tree and
IWC-tree.

Its mean time of 0.021s is less than the search time, in the BCCF-tree, for k = 5

which is equal to 0.1s. Our results are also comparable to those in literature. In

[237], for k = 50, the query time is 0.1s on Foursquare dataset while in [209], the

execution time for spatial range query on R*-tree on spark is 0.02s. In [263], with

a number of workers of 32 and for k = 4, the query cost 2.7s for CoPHIR dataset.

8.3.3 Comparison between B3CF-tree and QCCF-tree

Face to the above interesting results, the QCCF-tree could be considered as the

improvement of the BCCF-tree especially during the combination of parallelism

with the kNN search method. However, a comparison with our next proposed

index (B3CF-tree), in which parallelism is used during indexes construction and

the kNN query search, must be done to find whether the index that could be

considered as an efficient alternative for IoT data indexing, storing and searching.

219

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

According to the above experimental results, our metric space proposed approach

proved its efficiency regarding the use of parallelism during both the B3CF-tree

construction and the kNN query search. However, a confrontation to the QCCF-

tree must be done in order to find the best alternative for big IoT data indexing

and retrieving. The kNN search time, with k = 5, 10, 15, 20, 50 and 100, in the the

B3CF-tree is presented with the kNN search time in QCCF-tree nodes in figure

8.9 for the geographical coordinates and tracking datasets. As can be seen, the

B3CF-tree presents much better results compared with the QCCF-tree.

Even for the construction time, figure 8.10 shows that the results of the B3CF-tree

are also much better than those of the QCCF-tree for both datasets which, without

a doubt, make of the B3CF-tree the efficient alternative for IoT data indexing and

queries retrieving.

k=5 k=10 k=15 k=20 k=50 k=100
0,0000

0,0002

0,0004

0,0006

0,0008

0,0010

0,0012

0,0014

0,0016

0,
00

00
06

05
47

8

0,
00

00
03

92
04

9

0,
00

00
01

73
72

6

0,
00

00
01

73
72

6

0,
00

00
01

17
17

6

0,
00

00
00

74
68

64

Geographical Coordinates

T
im

e
of

 s
ea

rc
h

(s
)

 QCCF-tree
 B3CF-tree

k=5 k=10 k=15 k=20 k=50 k=100
0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,
00

02
01

46

0,
00

01
09

92

0,
00

00
69

31
27

0,
00

00
61

12
63

0,
00

00
61

15
75

0,
00

00
52

71
6

Tracking dataset

T
im

e
of

 s
ea

rc
h

(s
)

 QCCF-tree
 B3CF-tree

Figure 8.9: Time of kNN search in QCCF-tree and B3CF-tree.

220

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

Geographical. Coordinates Tracking Dataset
0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,
00

04

C
on

st
ru

ct
io

n
tim

e
(s

)

 QCCF-tree
 B3CF-tree

Figure 8.10: Construction time in QCCF-tree and B3CF-tree.

However, despite its efficiency, the B3CF-tree faced a limitation that is the query

search cost. Indeed, the use of parallelism makes the kNN query search simultane-

ous in all fogs, which will multiply the consumed energy taking into consideration

that the search result will be finely send from only one index in one fog. The se-

quential kNN search does not consume energy compared with parallel kNN search.

However, it presents a latency problem because if the query is not found in one

fog, the kNN search will be done in the next fog and so on.

8.4 Conclusion

In this chapter, the use of four balls with four pivots partitioning was done in order

to overcome the problem of the efficiency of indexing, storing and retrieving IoT

big data. This is because the dividing of the exponentially-grown data into subsets

using balls, with one or two pivots, induced the degeneration of the index due to the

inherent inadequacy of space partitioning. Our proposed index structure, called

QCCF-tree, exhibited interesting and competitive experimental results either in

the construction or in the similar query search using parallelism when browsing

221

CHAPTER. 8 Parallel kNN Search in QCCF-tree Nodes

the index nodes. Indeed, the comparison of the index construction evaluation and

the similarity search results of the QCCF-tree with those of the BCCF-tree [5],

IWC-tree [5], MX-tree [247] and BB-tree [176],[201] showed that the QCCF-tree

surpassed them largely. However, when comparing these results with those of

the B3CF-tree, the QCCF-tree exhibited a remarkable insufficiency in both index

construction and similarity query search.

222

Conclusions

This thesis work represents our contribution in the similarity queries search in

metric space in IoT systems. The kNN method was used for similarity queries

search in proposed indexes developed, in metric space, using the fog-cloud archi-

tecture which contains a terminal layer, a fog layer and a cloud layer. The indexing

process is shifted from the cloud to the fog nodes to get the data near the indexing

structure and thus, reduce the network traffic congestion significantly. Moreover,

each fog node creates its unique indexing structure, allowing not only parallelism

during trees construction, but also parallelism in the search process by launching

the same query simultaneously on all fog nodes. In the first proposed approach,

called the B3CF-tree (Binary tree based on Containers at the Cloud-Clusters Fog

computing level), each fog node is divided into clustering fog level and indexing

fog level. In the clustering fog level, IoT data sent from the terminal layer is parti-

tioned into homogeneous groups, or clusters, in terms of type and dimension using

the DBSCAN algorithm. The aim of the clustering process was to generate a bal-

anced trees with a reduced degree of overlapping between leaves. In the indexing

fog level, objects in each cluster are indexed, in parallel, in B3CF-trees. The data

partitioning, using the DBSCAN algorithm, allowed parallelism, not only when

indexing data of the resulting clusters, but also, when using the kNN method

for the similarity queries search. The experimental results, obtained using one

data stream, showed that the proposed B3CF-tree outperforms indexes in litera-

223

Conclusions

ture, such as BCCF-tree, IWC-tree and BB-tree, in terms of indexes construction,

indexes quality and the similarity query search using the kNN method.

For indexing continuous data stream generated from IoT devices, two other ap-

proaches were proposed: the Coefficient of Variation (CV) method and the Thresh-

old Distance (TD) method. For both proposed approaches, the kNN search method

was combined with parallelism when searching the similarity queries.

In the CV method approach, the fog layer is divided into three levels: the clustering

level, the clusters processing level and the indexing level. In the clustering fog level,

the first data stream is grouped into clusters using DBSCAN algorithm which are

stored in the clusters processing fog level while their corresponding BH-trees are

directly constructed, in parallel, in the indexing fog level. After the clustering of

the arrival data stream, in the clustering level, the coefficient of variation (CV) of

the union of of each arrival cluster with the a copy of first clusters is calculated

and, according to the CV value, objects of the arrival cluster are inserted into an

existing BH-tree or a new BH-tree is constructed. To test the efficiency of the

proposed CV method, two other scenarios were proposed for comparison. In the

first scenario, called the Creation of a New Index (CNI) method, for each arrival

cluster, a BH-tree is constructed. In the second scenario, called the Insertion in an

Existing Index (IEI) method, the objects of each arrival cluster are inserted in an

existing BH-tree corresponding to the closest existing cluster. From the evaluation

of BH-trees construction, the IEI method surpassed the CV and CNI methods.

Parameters of the CV method are always located between those of the CNI and

the IEI methods. For the parallel kNN query search, the three proposed methods

where efficient compared with other methods from literature. The comparison of

the proposed Cv method with the proposed scenarios showed that the CV method

is more efficient than the CNI and the IEI methods in terms of the parallel kNN

224

Conclusions

similarity query search and the energy consumption.

In the TD method approach, the for layer, as for the B3CF-tree structure, is di-

vided into a clustering level and an indexing level. In the clustering level, as for

the CV method, the first data stream is grouped into clusters by means of the

DBSCAN algorithm. Centers clusters are also determined. In the indexing level,

Generalised Hyper-plane Trees (GHT) are constructed, in parallel, for each first

cluster. The center of each first cluster is taken as a representative of the corre-

sponding GHT. After the clustering and the determination of the clusters centers

of the arrival data stream, objects in each arrival cluster are inserted in an existing

GHT or a new GHT is constructed basing on the comparison of the distances be-

tween the arrival cluster center and the existing GHT representatives to a threshold

distance. To check the efficiency of the TD method, it was compared to a pro-

posed scenario called the Creation of a New Tree (CNT). The experimental results

showed that both methods are efficient compared with other indexing methods

from literature. The experimental results showed also, that the TD method sur-

passed the CNT method not only during the construction of GHT but also during

the parallel kNN search of similarity queries. However, the TD method presented

some weakness when compared with the CV method.

In last proposition of this work, the fog node was not divided in the cloud-fog archi-

tecture. In the fog node, the proposed QCCF-tree (Quad-tree based on Containers

at the Cloud-Fog computing level) is based on the use of four balls with four pivots

partitioning in metric space. This approach was proposed in order to overcome the

problem of the efficiency of indexing, storing and retrieving of big IoT data. The

proposed QCCF-tree exhibited interesting and competitive experimental results

either in the index construction or in the parallel kNN similarity query search in

the inner of the QCCF-tree i.e. in the QCCF-tree nodes. The confrontation of

225

Conclusions

the experimental results to those of BCCF-tree, BB-tree, MX-tree and IWC-tree

showed that the performances of the proposed QCCF-tree surpasses their largely

whether it be in the index construction or in the similarity query search. The

evaluation and the comparison results between QCCF-tree and B3CF-tree clearly

showed that the efficiency of parallel similarity query search and the quality of

B3CF-tree indexes exceeded those of the QCCF-tree. Indeed, the introduction of

parallelism allowed by the DBSCAN clustering improved the construction char-

acteristics of the B3CF-tree and also, significantly accelerated the kNN similarity

queries search.

As a future work, we will focus on the implementation of the algorithm in real

IoT networks and testing real data from real situations. Despite the evidenced

effect of parallelism in improving the indexing and the retrieving processes of big

IoT data in term of time, it presents the disadvantage of cost i.e. the energy

consumption. Indeed, the use of parallelism, especially when searching similarity

queries, induced the exploration of all machines simultaneously while the answer

is sent from only on machine. The proposition of an alternative of parallelism that

reduces the energy consumption and guards the same efficiency of the proposed

methods in this thesis work will be also considered.

226

References

[1] V. Upadrista, “The iot standards reference model,” in IoT Standards with

Blockchain, pp. 61–86, Springer, 2021. 1

[2] M. Taneja and A. Davy, “Resource aware placement of iot application mod-

ules in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM), pp. 1222–1228, IEEE,

2017. 1

[3] M. Wang and Q. Zhang, “Optimized data storage algorithm of iot based

on cloud computing in distributed system,” Computer Communications,

vol. 157, pp. 124–131, 2020. 1

[4] M. Zhou, J. Li, and J. Ye, “Design of big data compatible storage sys-

tem based on cloud computing environment,” in 2020 39th Chinese Control

Conference (CCC), pp. 3158–3161, IEEE, 2020. 1

[5] A.-E. Benrazek, Z. Kouahla, B. Farou, M. A. Ferrag, H. Seridi, and M. Kuru-

lay, “An efficient indexing for internet of things massive data based on cloud-

fog computing,” Transactions on emerging telecommunications technologies,

vol. 31, no. 3, p. e3868, 2020. 1, 119, 120, 128, 132, 136, 137, 143, 159, 160,

173, 190, 197, 204, 207, 208, 212, 213, 222

[6] D. Miao, L. Liu, R. Xu, J. Panneerselvam, Y. Wu, and W. Xu, “An effi-

227

References

cient indexing model for the fog layer of industrial internet of things,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4487–4496, 2018.

1, 119, 128

[7] C. Böhm, S. Berchtold, H.-P. Kriegel, and U. Michel, “Multidimensional

index structures in relational databases,” Journal of Intelligent Information

Systems, vol. 15, no. 1, pp. 51–70, 2000. 2

[8] V. Gaede and O. Günther, “Multidimensional access methods,” ACM

Computing Surveys (CSUR), vol. 30, no. 2, pp. 170–231, 1998. 2

[9] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. Ferrag, N. Choudhury,

and V. Kumar, “Security and privacy in fog computing: Challenges,” IEEE

Access, vol. 5, pp. 19293–19304, 2017. 2

[10] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive clustering for dy-

namic iot data streams,” IEEE Internet of Things Journal, vol. 4, no. 1,

pp. 64–74, 2016. 3, 9, 52, 57, 65, 67, 71

[11] G. Fortino and P. Trunfio, Internet of things based on smart objects:

Technology, middleware and applications. Springer, 2014. 9

[12] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”

in Proceedings of the 1984 ACM SIGMOD international conference on

Management of data, pp. 47–57, 1984. 9, 81, 85, 86, 92, 124

[13] C. Yang, D. Deng, S. Shang, and L. Shao, “Efficient locality-sensitive hash-

ing over high-dimensional data streams,” in 2020 IEEE 36th International

Conference on Data Engineering (ICDE), pp. 1986–1989, IEEE, 2020. 9, 75,

90, 121, 125

228

References

[14] Z. Chen, B. Yao, Z.-J. Wang, W. Zhang, K. Zheng, P. Kalnis, and

F. Tang, “Itiss: an efficient framework for querying big temporal data,”

GeoInformatica, vol. 24, no. 1, pp. 27–59, 2020. 9, 91, 125

[15] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity search: the metric

space approach, vol. 32. Springer Science & Business Media, 2006. 9, 12, 16,

17, 18, 94, 98

[16] R. Mao, H. Xu, W. Wu, J. Li, Y. Li, and M. Lu, “Overcoming the challenge

of variety: big data abstraction, the next evolution of data management

for aal communication systems,” IEEE Communications Magazine, vol. 53,

no. 1, pp. 42–47, 2015. 9

[17] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquín, “Searching in

metric spaces,” ACM computing surveys (CSUR), vol. 33, no. 3, pp. 273–321,

2001. 9, 10, 101

[18] Z. Kouahla, Indexation dans les espaces métriques Index arborescent et

parallélisation. PhD thesis, Université de Nantes, 2013. 11, 12, 14, 15,

16, 18, 110

[19] M. L. Hetland, “The basic principles of metric indexing,” in Swarm

intelligence for multi-objective problems in data mining, pp. 199–232,

Springer, 2009. 15

[20] C. Zavazava, “Itu work on internet of things,” in Presentation at ICTP

workshop, 2015. 20, 23

[21] V. Sharma and R. Tiwari, “A review paper on “iot” & it’s smart ap-

plications,” International Journal of Science, Engineering and Technology

Research (IJSETR), vol. 5, no. 2, pp. 472–476, 2016. 20, 23, 27

229

References

[22] D. Happ, “Cloud and fog computing in the internet of things,” Internet of

Things A to Z: Technologies and Applications; Wiley Online Library: New

York, NY, USA, pp. 113–134, 2018. 20, 130

[23] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things

(iot): A vision, architectural elements, and future directions,” Future

generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013. 21, 22,

27, 28, 29

[24] M. Weiser, R. Gold, and J. S. Brown, “The origins of ubiquitous computing

research at parc in the late 1980s,” IBM systems journal, vol. 38, no. 4,

pp. 693–696, 1999. 21

[25] Y. Rogers, “Moving on from weiser’s vision of calm computing: Engaging

ubicomp experiences,” in International conference on Ubiquitous computing,

pp. 404–421, Springer, 2006. 21

[26] R. Caceres and A. Friday, “Ubicomp systems at 20: Progress, opportunities,

and challenges,” IEEE Pervasive Computing, vol. 11, no. 1, pp. 14–21, 2011.

21

[27] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22,

no. 7, pp. 97–114, 2009. 21

[28] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and chal-

lenges for realising the internet of things,” Cluster of European research

projects on the internet of things, European Commision, vol. 3, no. 3, pp. 34–

36, 2010. 21, 22

[29] R. Van Kranenburg, The Internet of Things: A critique of ambient

technology and the all-seeing network of RFID. Institute of Network Cul-

tures, 2008. 22

230

References

[30] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010. 22, 26

[31] M. P. A. Hukeri, M. Ghewari, et al., “Review paper on iot based technology,”

International Research Journal of Engineering and Technology, vol. 4, no. 01,

2017. 23

[32] P. P. Ray, “A survey on internet of things architectures,” Journal of King

Saud University-Computer and Information Sciences, vol. 30, no. 3, pp. 291–

319, 2018. 23, 24

[33] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of things: A survey on enabling technologies, protocols, and appli-

cations,” IEEE communications surveys & tutorials, vol. 17, no. 4, pp. 2347–

2376, 2015. 24, 26, 30, 31

[34] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the internet

of things architecture, possible applications and key challenges,” in 2012 10th

international conference on frontiers of information technology, pp. 257–260,

IEEE, 2012. 24, 25, 26

[35] Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, “Study and appli-

cation on the architecture and key technologies for iot,” in 2011 International

Conference on Multimedia Technology, pp. 747–751, IEEE, 2011. 24, 26

[36] M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the ar-

chitecture of internet of things,” in 2010 3rd international conference on

advanced computer theory and engineering (ICACTE), vol. 5, pp. V5–484,

IEEE, 2010. 24, 26

[37] D. Uckelmann, M. Harrison, and F. Michahelles, “An architectural approach

231

References

towards the future internet of things,” in Architecting the internet of things,

pp. 1–24, Springer, 2011. 25

[38] B. Paul, “Internet of things (iot), three-layer architecture, security issues and

counter measures,” in ICT Analysis and Applications, pp. 23–34, Springer,

2022. 25

[39] A.-E. BENRAZEK, Internet of Things: Analysis of suspicious behaviour in

a surveillance camera network. PhD thesis, 2021. 28, 130, 139

[40] H.-E. Lin, R. Zito, M. Taylor, et al., “A review of travel-time prediction

in transport and logistics,” in Proceedings of the Eastern Asia Society for

transportation studies, vol. 5, pp. 1433–1448, Bangkok, Thailand, 2005. 29

[41] M. Navajo, I. Ballesteros, S. D’Elia, A. Sassen, M. Goyet, J. Santaella, et al.,

“Draft report of the task force on interdisciplinary research activities appli-

cable to the future internet,” European Union Task Force Report, 2010. 29

[42] D. Tang, Event detection in sensor networks. PhD thesis, The George Wash-

ington University, 2009. 29

[43] A. Juels, “Rfid security and privacy: A research survey,” IEEE journal on

selected areas in communications, vol. 24, no. 2, pp. 381–394, 2006. 29

[44] S. Wang, Z. Zhang, Z. Ye, X. Wang, X. Lin, and S. Chen, “Application

of environmental internet of things on water quality management of urban

scenic river,” International Journal of Sustainable Development & World

Ecology, vol. 20, no. 3, pp. 216–222, 2013. 30

[45] J. Kempf, J. Arkko, N. Beheshti, and K. Yedavalli, “Thoughts on reliability

in the internet of things,” in Interconnecting smart objects with the Internet

232

References

workshop, vol. 1, pp. 1–4, Internet Architecture Board Boston, MA, USA,

2011. 30

[46] A. Dunkels, J. Eriksson, and N. Tsiftes, “Low-power interoperability for

the ipv6-based internet of things,” in Proceedings of the 10th Scandinavian

Workshop on Wireless Ad-Hoc Networks (ADHOC’11), Stockholm, Sweden,

pp. 10–11, 2011. 32

[47] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” 2011.

32, 33, 34, 36

[48] P. Srivastava and R. Khan, “A review paper on cloud computing,”

International Journal of Advanced Research in Computer Science and

Software Engineering, vol. 8, no. 6, pp. 17–20, 2018. 34

[49] M. Aazam, I. Khan, A. A. Alsaffar, and E.-N. Huh, “Cloud of things: In-

tegrating internet of things and cloud computing and the issues involved,”

in Proceedings of 2014 11th International Bhurban Conference on Applied

Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th-18th January,

2014, pp. 414–419, IEEE, 2014. 35, 38, 46

[50] N. Khan, N. Ahmad, T. Herawan, and Z. Inayat, “Cloud computing: Locally

sub-clouds instead of globally one cloud,” International Journal of Cloud

Applications and Computing (IJCAC), vol. 2, no. 3, pp. 68–85, 2012. 37

[51] R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino, “Multi-sensor fu-

sion in body sensor networks: State-of-the-art and research challenges,”

Information Fusion, vol. 35, pp. 68–80, 2017. 38

[52] P. Tan, H. Wu, P. Li, and H. Xu, “Teaching management system with appli-

cations of rfid and iot technology,” Education Sciences, vol. 8, no. 1, p. 26,

2018. 38

233

References

[53] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag, N. Choudhury,

and V. Kumar, “Security and privacy in fog computing: Challenges,” IEEE

Access, vol. 5, pp. 19293–19304, 2017. 38, 46, 163, 164

[54] Y. Shi, S. Abhilash, and K. Hwang, “Cloudlet mesh for securing mobile

clouds from intrusions and network attacks,” in 2015 3rd IEEE International

Conference on Mobile Cloud Computing, Services, and Engineering, pp. 109–

118, IEEE, 2015. 38

[55] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using open-

flow in dynamic cloud networks (or: How to provide security monitoring as a

service in clouds?),” in 2012 20th IEEE international conference on network

protocols (ICNP), pp. 1–6, IEEE, 2012. 38

[56] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A

survey and analysis of security threats and challenges,” Future Generation

Computer Systems, vol. 78, pp. 680–698, 2018. 39

[57] X. Li, X. Jiang, P. Garraghan, and Z. Wu, “Holistic energy and failure aware

workload scheduling in cloud datacenters,” Future Generation Computer

Systems, vol. 78, pp. 887–900, 2018. 39

[58] S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya, G. S. Wander, and

R. Buyya, “Healthfog: An ensemble deep learning based smart healthcare

system for automatic diagnosis of heart diseases in integrated iot and fog

computing environments,” Future Generation Computer Systems, vol. 104,

pp. 187–200, 2020. 39

[59] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese,

E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto, et al., “A manifesto for

234

References

future generation cloud computing: Research directions for the next decade,”

ACM computing surveys (CSUR), vol. 51, no. 5, pp. 1–38, 2018. 39

[60] Y.-K. Chen, “Challenges and opportunities of internet of things,” in 17th

Asia and South Pacific design automation conference, pp. 383–388, IEEE,

2012. 39

[61] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed, A. S.

Sami, and R. R. Zebari, “Iot and cloud computing issues, challenges and

opportunities: A review,” Qubahan Academic Journal, vol. 1, no. 2, pp. 1–7,

2021. 39

[62] S. Singh and I. Chana, “A survey on resource scheduling in cloud computing:

Issues and challenges,” Journal of grid computing, vol. 14, no. 2, pp. 217–264,

2016. 40

[63] S. S. Gill, P. Garraghan, and R. Buyya, “Router: Fog enabled cloud based in-

telligent resource management approach for smart home iot devices,” Journal

of Systems and Software, vol. 154, pp. 125–138, 2019. 40

[64] S. S. Gill, P. Garraghan, V. Stankovski, G. Casale, R. K. Thulasiram, S. K.

Ghosh, K. Ramamohanarao, and R. Buyya, “Holistic resource management

for sustainable and reliable cloud computing: An innovative solution to

global challenge,” Journal of Systems and Software, vol. 155, pp. 104–129,

2019. 40

[65] S. Singh and I. Chana, “Qos-aware autonomic resource management in cloud

computing: a systematic review,” ACM Computing Surveys (CSUR), vol. 48,

no. 3, pp. 1–46, 2015. 40

[66] S. S. Gill, S. Tuli, M. Xu, I. Singh, K. V. Singh, D. Lindsay, S. Tuli,

D. Smirnova, M. Singh, U. Jain, et al., “Transformative effects of iot,

235

References

blockchain and artificial intelligence on cloud computing: Evolution, vision,

trends and open challenges,” Internet of Things, vol. 8, p. 100118, 2019. 40

[67] M. Iorga, L. Feldman, R. Barton, M. Martin, N. Goren, and C. Mahmoudi,

“The nist definition of fog computing,” tech. rep., National Institute of Stan-

dards and Technology, 2017. 41, 42, 44

[68] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards

a comprehensive definition of fog computing,” ACM SIGCOMM computer

communication Review, vol. 44, no. 5, pp. 27–32, 2014. 41

[69] B. Di Martino, M. Rak, M. Ficco, A. Esposito, S. A. Maisto, and S. Nacchia,

“Internet of things reference architectures, security and interoperability: A

survey,” Internet of Things, vol. 1, pp. 99–112, 2018. 41

[70] M. R. Anawar, S. Wang, M. Azam Zia, A. K. Jadoon, U. Akram, and

S. Raza, “Fog computing: An overview of big iot data analytics,” Wireless

Communications and Mobile Computing, vol. 2018, 2018. 42, 49, 50

[71] P. More, “Review of implementing fog computing,” International Journal of

Research in Engineering and Technology, vol. 4, no. 06, pp. 335–338, 2015.

43

[72] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, C. Mahmoudi,

et al., “Fog computing conceptual model,” 2018. 44, 45

[73] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on

internet of things: Architecture, enabling technologies, security and privacy,

and applications,” IEEE internet of things journal, vol. 4, no. 5, pp. 1125–

1142, 2017. 46

236

References

[74] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia,

“Fog computing: a comprehensive architectural survey,” IEEE Access, vol. 8,

pp. 69105–69133, 2020. 46

[75] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and F. Bonomi, “Im-

proving web sites performance using edge servers in fog computing architec-

ture,” in 2013 IEEE Seventh International Symposium on Service-Oriented

System Engineering, pp. 320–323, IEEE, 2013. 46

[76] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A hierarchical

distributed fog computing architecture for big data analysis in smart cities,”

in Proceedings of the ASE BigData & SocialInformatics 2015, pp. 1–6, 2015.

46

[77] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “Mist: Fog-based data an-

alytics scheme with cost-efficient resource provisioning for iot crowdsens-

ing applications,” Journal of Network and Computer Applications, vol. 82,

pp. 152–165, 2017. 46

[78] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,

“Fog computing: Principles, architectures, and applications,” in Internet of

things, pp. 61–75, Elsevier, 2016. 46

[79] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xi-

ang, and R. Ranjan, “Fog computing: Survey of trends, architectures, re-

quirements, and research directions,” IEEE access, vol. 6, pp. 47980–48009,

2018. 46

[80] O. Consortium and A. Working, “Openfog reference architecture for fog com-

puting,” J.Netw. Comput, p. 1–162, 2017. 46

237

References

[81] Z. Á. Mann, “Notions of architecture in fog computing,” Computing, vol. 103,

no. 1, pp. 51–73, 2021. 47

[82] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: archi-

tecture, key technologies, applications and open issues,” Journal of network

and computer applications, vol. 98, pp. 27–42, 2017. 48, 49

[83] T. Hu, H. Chen, L. Huang, and X. Zhu, “A survey of mass data mining based

on cloud-computing,” in Anti-counterfeiting, Security, and Identification,

pp. 1–4, IEEE, 2012. 52

[84] N. Golchha, “Big data–the information revolution,” International journal of

applied research, vol. 1, pp. 791–794, 2015. 52

[85] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa,

and I. Yaqoob, “Big iot data analytics: architecture, opportunities, and open

research challenges,” ieee access, vol. 5, pp. 5247–5261, 2017. 52, 56, 70, 162

[86] R. Tang and S. Fong, “Clustering big iot data by metaheuristic optimized

mini-batch and parallel partition-based dgc in hadoop,” Future Generation

Computer Systems, vol. 86, pp. 1395–1412, 2018. 52, 66, 67

[87] V. Chaorasiya and A. SHRIVASTAVA, “A survey on big data: techniques

and technologies,” International Journal of Research and Development in

Applied Science and Engineering, vol. 8, no. 1, pp. 1–4, 2015. 53

[88] E. G. Ularu, F. C. Puican, A. Apostu, M. Velicanu, et al., “Perspectives on

big data and big data analytics,” Database Systems Journal, vol. 3, no. 4,

pp. 3–14, 2012. 53

[89] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U.

238

References

Khan, “The rise of “big data” on cloud computing: Review and open research

issues,” Information systems, vol. 47, pp. 98–115, 2015. 53

[90] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger

digital shadows, and biggest growth in the far east,” IDC iView: IDC Analyze

the future, vol. 2007, no. 2012, pp. 1–16, 2012. 53

[91] P. Tiainen et al., “New opportunities in electrical engineering as a result of

the emergence of the internet of things,” Master’s thesis, 2016. 53

[92] S. Madden, “From databases to big data,” IEEE Internet Computing, vol. 16,

no. 3, pp. 4–6, 2012. 53

[93] R. Omollo and S. Alago, “Data modeling techniques used for big data in

enterprise networks,” 2020. 53

[94] J. Anuradha et al., “A brief introduction on big data 5vs characteristics and

hadoop technology,” Procedia computer science, vol. 48, pp. 319–324, 2015.

54

[95] M. Lněnička, R. Máchová, J. Komárková, and I. Čermáková, “Components

of big data analytics for strategic management of enterprise architecture,” in

SMSIS 2017: Proceedings of the 12th International Conference on Strategic

Management and its Support by Information Systems, Vysoká škola báňská-

Technická univerzita Ostrava, 2017. 54

[96] A. Alexandru, C. Alexandru, D. Coardos, and E. Tudora, “Healthcare, big

data and cloud computing,” management, vol. 1, no. 2, 2016. 54

[97] B. H. Malik, S. N. Cheema, I. Iqbal, Y. Mahmood, M. Ali, and A. Mudasser,

“From cloud computing to fog computing (c2f): The key technology provides

239

References

services in health care big data,” in MATEC Web of Conferences, vol. 189,

p. 03010, EDP Sciences, 2018. 54

[98] P. Gulia and A. Chahal, “Big data analytics for iot,” International Journal

of Advanced Research in Engineering and Technology (IJARET), vol. 11,

no. 6, 2020. 54

[99] N. Khan, M. Alsaqer, H. Shah, G. Badsha, A. A. Abbasi, and S. Salehian,

“The 10 vs, issues and challenges of big data,” in Proceedings of the 2018

international conference on big data and education, pp. 52–56, 2018. 55

[100] Z. Sun, K. Strang, and R. Li, “Big data with ten big characteristics,” in

Proceedings of the 2nd International Conference on Big Data Research,

pp. 56–61, 2018. 55, 56

[101] M. Chen, S. Mao, Y. Zhang, V. C. Leung, et al., Big data: related

technologies, challenges and future prospects, vol. 100. Springer, 2014. 56

[102] D. V. H. S. Kriti Srivastava, R. Shah, “Data mining using hierarchical ag-

glomerative clustering algorithm in distributed cloud computing environ-

ment,” International Journal of Computer Theory and Engineering, vol. 5,

no. 3, 2013. 56

[103] T. Sajana, C. S. Rani, and K. Narayana, “A survey on clustering techniques

for big data mining,” Indian journal of Science and Technology, vol. 9, no. 3,

pp. 1–12, 2016. 56, 58, 59, 61

[104] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

vol. 29, no. 3, pp. 433–439, 1999. 57, 67, 119

240

References

[105] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering

algorithm,” Computers & geosciences, vol. 10, no. 2-3, pp. 191–203, 1984.

57, 67

[106] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clus-

tering method for very large databases,” ACM sigmod record, vol. 25, no. 2,

pp. 103–114, 1996. 58, 60, 67

[107] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering algorithm

for large databases,” ACM Sigmod record, vol. 27, no. 2, pp. 73–84, 1998.

58, 65, 67

[108] S. Guha, R. Rastogi, and K. Shim, “Rock: A robust clustering algorithm

for categorical attributes,” Information systems, vol. 25, no. 5, pp. 345–366,

2000. 58, 59, 67

[109] Y. Rani1 and H. Rohil, “A study of hierarchical clustering algorithm,” ter S

& on Te SIT, vol. 2, p. 113, 2013. 58, 59, 67

[110] W. Wang, J. Yang, R. Muntz, et al., “Sting: A statistical information grid

approach to spatial data mining,” in Vldb, vol. 97, pp. 186–195, Citeseer,

1997. 59, 60, 67

[111] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic sub-

space clustering of high dimensional data for data mining applications,”

in Proceedings of the 1998 ACM SIGMOD international conference on

Management of data, pp. 94–105, 1998. 59, 60, 67

[112] S. Goil, H. Nagesh, and A. Choudhary, “Mafia: E±cient and scal-

able subspace clustering for very large data sets,” in Proc. 5th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, Citeseer, pp. 443–452, Citeseer, 1999. 59, 60, 67

241

References

[113] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78,

no. 9, pp. 1464–1480, 1990. 61, 67

[114] D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,”

Machine learning, vol. 2, no. 2, pp. 139–172, 1987. 61, 67

[115] B. Krose and P. v. d. Smagt, An introduction to neural networks. 2011. 61

[116] B. O. Reddy and M. Ussenaiah, “Literature survey on clustering techniques,”

IOSR Journal of Computer Engineering, vol. 3, no. 1, pp. 1–50, 2012. 61,

62, 66, 67, 69

[117] N. Sharma, A. Bajpai, and M. R. Litoriya, “Comparison the various clus-

tering algorithms of weka tools,” facilities, vol. 4, no. 7, pp. 78–80, 2012.

61

[118] G. S. Lee, “The effect of bias in data set for conceptual clustering algorithms,”

International journal of advanced smart convergence, vol. 8, no. 3, pp. 46–53,

2019. 62

[119] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm

for discovering clusters in large spatial databases with noise.,” in kdd, vol. 96,

pp. 226–231, 1996. 62, 67, 139, 193, 195

[120] m. . S. y. . . h. Farukh Hashmi, title = DBSCAN. 63

[121] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering

points to identify the clustering structure,” ACM Sigmod record, vol. 28,

no. 2, pp. 49–60, 1999. 64, 67

[122] D. WISHERT, “Mode analysis : a generalization of nearest neighbour which

reduces chaining effects (with discussion),” Numerical Taxonomy, pp. 282–

311, 1969. 64

242

References

[123] R. J. Campello, P. Kröger, J. Sander, and A. Zimek, “Density-based clus-

tering,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 10, no. 2, p. e1343, 2020. 64

[124] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions

on neural networks, vol. 16, no. 3, pp. 645–678, 2005. 65

[125] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J.

Er, W. Ding, and C.-T. Lin, “A review of clustering techniques and devel-

opments,” Neurocomputing, vol. 267, pp. 664–681, 2017. 65, 66, 67, 68, 69,

71

[126] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,”

Journal of the American statistical association, vol. 58, no. 301, pp. 236–

244, 1963. 65

[127] L. Rasyid and S. Andayani, “Review on clustering algorithms based on data

type: towards the method for data combined of numeric-fuzzy linguistics,” in

Journal of Physics: Conference Series, vol. 1097, p. 012082, IOP Publishing,

2018. 67

[128] G. Thilagavathi, D. Srivaishnavi, N. Aparna, et al., “A survey on effi-

cient hierarchical algorithm used in clustering,” International Journal of

Engineering, vol. 2, no. 9, pp. 165–176, 2013. 67, 68

[129] M. Cai and Y. Liang, “An improved cure algorithm,” in International

conference on intelligence science, pp. 102–111, Springer, 2018. 67

[130] R. Subhashini and J. Akilandeswari, “A survey on ontology construction

methodologies,” International Journal of Enterprise Computing and Business

Systems, vol. 1, no. 1, pp. 60–72, 2011. 68

243

References

[131] J. Han, M. Kamber, and J. Pei, “Data mining: concepts and,” Techniques

(3rd ed), Morgan Kauffman, 2011. 68

[132] M. Carnein and H. Trautmann, “Optimizing data stream representation: An

extensive survey on stream clustering algorithms,” Business & Information

Systems Engineering, vol. 61, no. 3, pp. 277–297, 2019. 69

[133] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello, “A

survey of multiobjective evolutionary algorithms for data mining: Part i,”

IEEE Transactions on Evolutionary Computation, vol. 18, no. 1, pp. 4–19,

2013. 69

[134] A. Gosain and M. Bhugra, “A comprehensive survey of association rules on

quantitative data in data mining,” in 2013 IEEE Conference on Information

& Communication Technologies, pp. 1003–1008, IEEE, 2013. 70

[135] C. Luo and S. M. Chung, “Efficient mining of maximal sequential patterns

using multiple samples,” in Proceedings of the 2005 SIAM International

Conference on Data Mining, pp. 415–426, SIAM, 2005. 71

[136] Z. Yang and M. Kitsuregawa, “Lapin-spam: An improved algorithm for

mining sequential pattern,” in 21st International Conference on Data

Engineering Workshops (ICDEW’05), pp. 1222–1222, IEEE, 2005. 71

[137] V. Estivill-Castro, “Why so many clustering algorithms: a position paper,”

ACM SIGKDD explorations newsletter, vol. 4, no. 1, pp. 65–75, 2002. 71

[138] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards remov-

ing the curse of dimensionality,” in Proceedings of the thirtieth annual ACM

symposium on Theory of computing, pp. 604–613, 1998. 75

244

References

[139] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive

hashing scheme based on p-stable distributions,” in Proceedings of the

twentieth annual symposium on Computational geometry, pp. 253–262,

2004. 75

[140] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe lsh: ef-

ficient indexing for high-dimensional similarity search,” in 33rd International

Conference on Very Large Data Bases, VLDB 2007, pp. 950–961, Association

for Computing Machinery, Inc, 2007. 75

[141] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Efficient and accurate nearest neigh-

bor and closest pair search in high-dimensional space,” ACM Transactions

on Database Systems (TODS), vol. 35, no. 3, pp. 1–46, 2010. 75

[142] B. Zheng, Z. Xi, L. Weng, N. Q. V. Hung, H. Liu, and C. S. Jensen, “Pm-

lsh: A fast and accurate lsh framework for high-dimensional approximate nn

search,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp. 643–655,

2020. 75, 76, 77, 121

[143] J. Gan, J. Feng, Q. Fang, and W. Ng, “Locality-sensitive hashing scheme

based on dynamic collision counting,” in Proceedings of the 2012 ACM

SIGMOD international conference on management of data, pp. 541–552,

2012. 75, 121

[144] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, “Query-aware locality-

sensitive hashing for approximate nearest neighbor search,” Proceedings of

the VLDB Endowment, vol. 9, no. 1, pp. 1–12, 2015. 75, 121

[145] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured merge-

tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385, 1996. 75

245

References

[146] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang, “Locally linear hashing for ex-

tracting non-linear manifolds,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2115–2122, 2014. 76

[147] N. Kraus, D. Carmel, I. Keidar, and M. Orenbach, “Nearbucket-lsh: Efficient

similarity search in p2p networks,” in International conference on similarity

search and applications, pp. 236–249, Springer, 2016. 76, 121

[148] J. Liao, D. Yang, T. Li, Q. Qi, J. Wang, and H. Sun, “Fusion feature

for lsh-based image retrieval in a cloud datacenter,” Multimedia Tools and

Applications, vol. 75, no. 23, pp. 15405–15427, 2016. 76, 121

[149] Y.-T. Chuang, C.-Y. Yu, and Q.-W. Wu, “Dslm: a decentralized search for

large and mobile networks,” The Journal of Supercomputing, vol. 74, no. 2,

pp. 738–767, 2018. 77, 121

[150] J. Wu, L. Shen, and L. Liu, “Lsh-based distributed similarity indexing with

load balancing in high-dimensional space,” The Journal of Supercomputing,

vol. 76, no. 1, pp. 636–665, 2020. 77, 121

[151] Y. Yang, F. Shen, H. T. Shen, H. Li, and X. Li, “Robust discrete spectral

hashing for large-scale image semantic indexing,” IEEE Transactions on Big

Data, vol. 1, no. 4, pp. 162–171, 2015. 77, 78, 122

[152] Z. Kouahla, A.-E. Benrazek, M. A. Ferrag, B. Farou, H. Seridi, M. Kurulay,

A. Anjum, and A. Asheralieva, “A survey on big iot data indexing: Potential

solutions, recent advancements, and open issues,” Future Internet, vol. 14,

no. 1, p. 19, 2021. 77, 78, 108

[153] F. S. Patel and D. Kasat, “Hashing based indexing techniques for con-

tent based image retrieval: A survey,” in 2017 International Conference on

246

References

Innovative Mechanisms for Industry Applications (ICIMIA), pp. 279–283,

IEEE, 2017. 77

[154] D. Cai, “A revisit of hashing algorithms for approximate nearest neighbor

search,” IEEE Transactions on Knowledge and Data Engineering, vol. 33,

no. 6, pp. 2337–2348, 2019. 77

[155] L. Xie, J. Shen, J. Han, L. Zhu, and L. Shao, “Dynamic multi-view hashing

for online image retrieval,” IJCAI, 2017. 78, 122

[156] A. Mourão and J. Magalhães, “Towards cloud distributed image indexing by

sparse hashing,” in Proceedings of the 2019 on International Conference on

Multimedia Retrieval, pp. 288–296, 2019. 78, 122

[157] D. Zhai, X. Liu, X. Ji, D. Zhao, S. Satoh, and W. Gao, “Supervised dis-

tributed hashing for large-scale multimedia retrieval,” IEEE Transactions on

Multimedia, vol. 20, no. 3, pp. 675–686, 2017. 78, 122

[158] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantization:

A procrustean approach to learning binary codes for large-scale image re-

trieval,” IEEE transactions on pattern analysis and machine intelligence,

vol. 35, no. 12, pp. 2916–2929, 2012. 79, 122

[159] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving quan-

tization method for learning binary compact codes,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 2938–2945,

2013. 79, 122

[160] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search: A

survey,” arXiv preprint arXiv:1408.2927, 2014. 79, 120, 122

247

References

[161] J. Li, J. Cheng, F. Yang, Y. Huang, Y. Zhao, X. Yan, and R. Zhao,

“Losha: A general framework for scalable locality sensitive hashing,” in

Proceedings of the 40th International ACM SIGIR Conference on Research

and Development in Information Retrieval, pp. 635–644, 2017. 79, 122

[162] J. L. Bentley, “Multidimensional binary search trees in database applica-

tions,” IEEE Transactions on Software Engineering, no. 4, pp. 333–340, 1979.

79, 80, 81, 83, 124

[163] H.-K. Ahn, N. Mamoulis, and H. M. Wong, “A survey on multidimensional

access methods,” 2001. 80

[164] M. d. Berg, M. v. Kreveld, M. Overmars, and O. Schwarzkopf, “Compu-

tational geometry,” in Computational geometry, pp. 1–17, Springer, 1997.

80

[165] J. B. Rosenberg, “Geographical data structures compared: A study of data

structures supporting region queries,” IEEE transactions on computer-aided

design of integrated circuits and systems, vol. 4, no. 1, pp. 53–67, 1985. 80

[166] J. T. Robinson, “The kdb-tree: a search structure for large multidimensional

dynamic indexes,” in Proceedings of the 1981 ACM SIGMOD international

conference on Management of data, pp. 10–18, 1981. 80, 124

[167] D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR), vol. 11,

no. 2, pp. 121–137, 1979. 80, 83, 124

[168] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on

composite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974. 81, 124

[169] A. A. Visheratin, K. D. Mukhina, A. K. Visheratina, D. Nasonov, and A. V.

Boukhanovsky, “Multiscale event detection using convolutional quadtrees

248

References

and adaptive geogrids,” in Proceedings of the 2nd ACM SIGSPATIAL

Workshop on Analytics for Local Events and News, pp. 1–10, 2018. 81

[170] A. Watve, S. Pramanik, S. Shahid, C. R. Meiners, and A. X. Liu, “Topo-

logical transformation approaches to database query processing,” IEEE

Transactions on Knowledge and Data Engineering, vol. 27, no. 5, pp. 1438–

1451, 2014. 81

[171] M. R. Abbasifard, B. Ghahremani, and H. Naderi, “A survey on nearest

neighbor search methods,” International Journal of Computer Applications,

vol. 95, no. 25, 2014. 82

[172] N. Katayama and S. Satoh, “The sr-tree: An index structure for high-

dimensional nearest neighbor queries,” ACM Sigmod Record, vol. 26, no. 2,

pp. 369–380, 1997. 82, 124

[173] S. Günnemann, H. Kremer, D. Lenhard, and T. Seidl, “Subspace clustering

for indexing high dimensional data: a main memory index based on local

reductions and individual multi-representations,” in Proceedings of the 14th

International Conference on Extending Database Technology, pp. 237–248,

2011. 82, 124

[174] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic index

for multi-dimensional objects.,” tech. rep., 1987. 82, 124

[175] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An

efficient and robust access method for points and rectangles,” in Proceedings

of the 1990 ACM SIGMOD international conference on Management of data,

pp. 322–331, 1990. 82, 124

[176] S. Sprenger, P. Schäfer, and U. Leser, “Bb-tree: A practical and efficient

249

References

main-memory index structure for multidimensional workloads.,” in EDBT,

pp. 169–180, 2019. 82, 83, 124, 132, 144, 207, 208, 213, 222

[177] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: An index structure

for high-dimensional data,” in Very Large Data-Bases, pp. 28–39, 1996. 82,

83, 104, 124

[178] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing the

positions of continuously moving objects,” in Proceedings of the 2000 ACM

SIGMOD international conference on Management of data, pp. 331–342,

2000. 83, 124

[179] Y. Tao, D. Papadias, and J. Sun, “The tpr*-tree: An optimized spatio-

temporal access method for predictive queries,” in Proceedings 2003 VLDB

conference, pp. 790–801, Elsevier, 2003. 83, 124

[180] Z. He, C. Wu, G. Liu, Z. Zheng, and Y. Tian, “Decomposition tree: A spatio-

temporal indexing method for movement big data,” Cluster Computing,

vol. 18, no. 4, pp. 1481–1492, 2015. 83, 124

[181] R. Bayer, “The universal b-tree for multidimensional indexing: General

concepts,” in International Conference on Worldwide Computing and Its

Applications, pp. 198–209, Springer, 1997. 83, 84, 124

[182] V. Srinivasan and M. J. Carey, “Performance of b+ tree concurrency control

algorithms,” The VLDB Journal, vol. 2, no. 4, pp. 361–406, 1993. 84, 87,

124

[183] H.-Y. Lin, “Using compressed index structures for processing moving ob-

jects in large spatio-temporal databases,” Journal of Systems and Software,

vol. 85, no. 1, pp. 167–177, 2012. 84, 124

250

References

[184] S. Wu and K.-L. Wu, “An indexing framework for efficient retrieval on the

cloud.,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 75–82, 2009. 85, 125

[185] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng, “An efficient multi-

dimensional index for cloud data management,” in Proceedings of the first

international workshop on Cloud data management, pp. 17–24, 2009. 85,

125, 155

[186] A. Papadopoulos and D. Katsaros, “A-tree: Distributed indexing of multidi-

mensional data for cloud computing environments,” in 2011 IEEE Third

International Conference on Cloud Computing Technology and Science,

pp. 407–414, IEEE, 2011. 85, 125

[187] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970. 85

[188] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for find-

ing best matches in logarithmic expected time,” ACM Transactions on

Mathematical Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977. 85

[189] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient b-tree based indexing

for cloud data processing,” Proceedings of the VLDB Endowment, vol. 3,

no. 1-2, pp. 1207–1218, 2010. 85, 86, 125

[190] H. V. Jagadish, B. C. Ooi, M. C. Rinard, and Q. H. Vu, “Baton: A balanced

tree structure for peer-to-peer networks,” 2006. 85

[191] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-dimensional

data in a cloud system,” in Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, pp. 591–602, 2010. 85,

86, 125

251

References

[192] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-

able content-addressable network,” in Proceedings of the 2001 conference

on Applications, technologies, architectures, and protocols for computer

communications, pp. 161–172, 2001. 85

[193] Y. Hong, Q. Tang, X. Gao, B. Yao, G. Chen, and S. Tang, “Efficient r-

tree based indexing scheme for server-centric cloud storage system,” IEEE

Transactions on Knowledge and Data Engineering, vol. 28, no. 6, pp. 1503–

1517, 2016. 86, 125, 130

[194] C. Feng, X. Yang, F. Liang, X.-H. Sun, and Z. Xu, “Lcindex: a local and

clustering index on distributed ordered tables for flexible multi-dimensional

range queries,” in 2015 44th International Conference on Parallel Processing,

pp. 719–728, IEEE, 2015. 86, 125, 130

[195] Y. Gao, X. Gao, Y. Zhu, and G. Chen, “An efficient and scalable multi-

dimensional indexing scheme for modular data centers,” Data & Knowledge

Engineering, vol. 123, p. 101729, 2019. 87, 125, 130

[196] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,

“Bcube: a high performance, server-centric network architecture for modular

data centers,” in Proceedings of the ACM SIGCOMM 2009 conference on

Data communication, pp. 63–74, 2009. 87

[197] X. Gao, Y. Gao, Y. Zhu, and G. Chen, “U 2-tree: A universal two-

layer distributed indexing scheme for cloud storage system,” IEEE/ACM

Transactions on Networking, vol. 27, no. 1, pp. 201–213, 2019. 87, 125, 130

[198] S. Wang, D. Maier, and B. C. Ooi, “Lightweight indexing of observational

data in log-structured storage,” Proceedings of the VLDB Endowment, vol. 7,

no. 7, pp. 529–540, 2014. 87, 88, 125

252

References

[199] Y. Fathy, P. Barnaghi, and R. Tafazolli, “Large-scale indexing, discovery, and

ranking for the internet of things (iot),” ACM Computing Surveys (CSUR),

vol. 51, no. 2, pp. 1–53, 2018. 88, 125, 162

[200] Y. Zou, J. Liu, S. Wang, L. Zha, and Z. Xu, “Ccindex: A complemen-

tal clustering index on distributed ordered tables for multi-dimensional

range queries,” in IFIP International Conference on Network and Parallel

Computing, pp. 247–261, Springer, 2010. 88, 125

[201] Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, and C. Liu, “An

efficient index for massive iot data in cloud environment,” in Proceedings

of the 21st ACM international conference on Information and knowledge

management, pp. 2129–2133, 2012. 88, 125, 132, 144, 207, 222

[202] C. Y. Huang and Y. J. Chang, “An adaptively multi-attribute index frame-

work for big iot data,” Computers & Geosciences, p. 104841, 2021. 89, 125

[203] Z. Ding, J. Xu, and Q. Yang, “Seaclouddm: a database cluster framework for

managing and querying massive heterogeneous sensor sampling data,” The

Journal of Supercomputing, vol. 66, no. 3, pp. 1260–1284, 2013. 89, 125

[204] X. Chen, J. Xu, R. Zhou, P. Zhao, C. Liu, J. Fang, and L. Zhao, “S2r-tree: a

pivot-based indexing structure for semantic-aware spatial keyword search,”

GeoInformatica, vol. 24, no. 1, pp. 3–25, 2020. 90, 123, 125

[205] J. Xia, S. Huang, S. Zhang, X. Li, J. Lyu, W. Xiu, and W. Tu, “Dapr-

tree: a distributed spatial data indexing scheme with data access patterns

to support digital earth initiatives,” International Journal of Digital Earth,

vol. 13, no. 12, pp. 1656–1671, 2020. 90, 123, 125

253

References

[206] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An asymp-

totically optimal multiversion b-tree,” The VLDB Journal, vol. 5, no. 4,

pp. 264–275, 1996. 91

[207] D. Kumar et al., “Dpiscan: Distributed and parallel architecture with in-

dexing for structural clustering of massive dynamic graphs,” International

Journal of Data Science and Analytics, pp. 1–25, 2022. 91, 125

[208] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore

key-value storage,” in Proceedings of the 7th ACM european conference on

Computer Systems, pp. 183–196, 2012. 91

[209] S. V. Limkar and R. K. Jha, “A novel method for parallel indexing of real time

geospatial big data generated by iot devices,” Future generation computer

systems, vol. 97, pp. 433–452, 2019. 92, 125, 219

[210] F. Hu, C. Yang, Y. Jiang, Y. Li, W. Song, D. Q. Duffy, J. L. Schnase, and

T. Lee, “A hierarchical indexing strategy for optimizing apache spark with

hdfs to efficiently query big geospatial raster data,” International Journal of

Digital Earth, vol. 13, no. 3, pp. 410–428, 2020. 92, 155

[211] Q.-T. Doan, A. Kayes, W. Rahayu, and K. Nguyen, “Integration of iot

streaming data with efficient indexing and storage optimization,” IEEE

Access, vol. 8, pp. 47456–47467, 2020. 92, 93, 125

[212] S. S. Bavirthi et al., “An approach for combining spatial and textual sky-

line querying using indexing mechanism,” Turkish Journal of Computer and

Mathematics Education (TURCOMAT), vol. 12, no. 11, pp. 672–680, 2021.

93, 125

[213] S. S. Bavirthi and K. Supreethi, “An efficient framework for spatio-textual

254

References

skyline querying and minimizing search space using r+ tree indexing tech-

nique,” International Journal of Information Technology, pp. 1–9, 2022. 93,

125

[214] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. Bernstein,

P. Boncz, S. Chaudhuri, A. Cheung, A. Doan, et al., “The seattle report on

database research,” ACM SIGMOD Record, vol. 48, no. 4, pp. 44–53, 2020.

93

[215] G. Weintraub, E. Gudes, and S. Dolev, “Needle in a haystack queries in cloud

data lakes.,” in EDBT/ICDT Workshops, 2021. 93, 125

[216] S. Wan, Y. Zhao, T. Wang, Z. Gu, Q. H. Abbasi, and K.-K. R. Choo,

“Multi-dimensional data indexing and range query processing via voronoi di-

agram for internet of things,” Future Generation Computer Systems, vol. 91,

pp. 382–391, 2019. 94, 125

[217] I. Kalantari and G. McDonald, “A data structure and an algorithm for the

nearest point problem,” IEEE Transactions on Software Engineering, no. 5,

pp. 631–634, 1983. 95, 127

[218] H. Noltemeier, K. Verbarg, and C. Zirkelbach, “Monotonous bisector*

trees—a tool for efficient partitioning of complex scenes of geometric ob-

jects,” Data structures and efficient algorithms, pp. 186–203, 1992. 96, 127

[219] F. Dehne and H. Noltemeier, “Voronoi trees and clustering problems,”

Information Systems, vol. 12, no. 2, pp. 171–175, 1987. 96, 127

[220] J. K. Uhlmann, “Satisfying general proximity/similarity queries with metric

trees,” Information processing letters, vol. 40, no. 4, pp. 175–179, 1991. 97,

115, 127, 193, 195

255

References

[221] Z. Kouahla and J. Martinez, “A new intersection tree for content-based

image retrieval,” in 2012 10th International Workshop on Content-Based

Multimedia Indexing (CBMI), pp. 1–6, IEEE, 2012. 97, 103, 104, 127

[222] S. Brin, “Near neighbor search in large metric spaces,” 1995. 98, 127

[223] G. Navarro and R. Uribe-Paredes, “Fully dynamic metric access methods

based on hyperplane partitioning,” Information Systems, vol. 36, no. 4,

pp. 734–747, 2011. 98, 127

[224] M. Antol and V. Dohnal, “Bm-index: balanced metric space index based

on weighted voronoi partitioning,” in European Conference on Advances in

Databases and Information Systems, pp. 337–353, Springer, 2019. 99

[225] A. Moriyama, L. S. Rodrigues, L. C. Scabora, M. T. Cazzolato, A. J. Traina,

and C. Traina Jr, “Vd-tree: how to build an efficient and fit metric access

method using voronoi diagrams,” in Proceedings of the 36th Annual ACM

Symposium on Applied Computing, pp. 327–335, 2021. 99, 127

[226] C. Traina, A. Traina, B. Seeger, and C. Faloutsos, “Slim-trees: High per-

formance metric trees minimizing overlap between nodes,” in International

Conference on Extending Database Technology, pp. 51–65, Springer, 2000.

99, 110, 127

[227] R. Mao, S. Liu, H. Xu, D. Zhang, and D. P. Miranker, “On data partition-

ing in tree structure metric-space indexes,” in International Conference on

Database Systems for Advanced Applications, pp. 141–155, Springer, 2014.

100, 109

[228] T. Bozkaya and M. Ozsoyoglu, “Distance-based indexing for high-

dimensional metric spaces,” in Proceedings of the 1997 ACM SIGMOD

256

References

international conference on Management of data, pp. 357–368, 1997. 100,

101

[229] P. N. Yianilos, “Data structures and algorithms for nearest neighbor,”

in Proceedings of the fourth annual ACM-SIAM Symposium on Discrete

algorithms, vol. 66, p. 311, SIAM, 1993. 100, 116, 127

[230] X. Zhou, G. Wang, J. X. Yu, and G. Yu, “M+-tree: A new dynamical multi-

dimensional index for metric spaces,” in Proceedings of the 14th Australasian

database conference-Volume 17, pp. 161–168, 2003. 100

[231] T. Bozkaya and M. Ozsoyoglu, “Indexing large metric spaces for similarity

search queries,” ACM Transactions on Database Systems (TODS), vol. 24,

no. 3, pp. 361–404, 1999. 100, 127

[232] I. R. V. Pola, C. Traina, and A. J. M. Traina, “The mm-tree: A memory-

based metric tree without overlap between nodes,” in East European

Conference on Advances in Databases and Information Systems, pp. 157–

171, Springer, 2007. 101, 102, 127

[233] C. C. M. Carélo, I. R. V. Pola, R. R. Ciferri, A. J. M. Traina, C. Traina Jr,

and C. D. de Aguiar Ciferri, “Slicing the metric space to provide quick in-

dexing of complex data in the main memory,” Information Systems, vol. 36,

no. 1, pp. 79–98, 2011. 101, 102, 103, 127

[234] Z. Kouahla, A. Anjum, S. Akram, T. Saba, and J. Martinez, “Xm-tree:

data driven computational model by using metric extended nodes with

non-overlapping in high-dimensional metric spaces,” Computational and

Mathematical Organization Theory, vol. 25, no. 2, pp. 196–223, 2019. 104,

105, 127

257

References

[235] I. R. V. Pola, C. Traina Jr, and A. J. M. Traina, “The nobh-tree: Improving

in-memory metric access methods by using metric hyperplanes with non-

overlapping nodes,” Data & Knowledge Engineering, vol. 94, pp. 65–88, 2014.

105, 106, 127

[236] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, “D-index: Distance search-

ing index for metric data sets,” Multimedia Tools and Applications, vol. 21,

no. 1, pp. 9–33, 2003. 106, 109, 127

[237] L. Chen, Y. Gao, X. Song, Z. Li, Y. Zhu, X. Miao, and C. S. Jensen, “Indexing

metric spaces for exact similarity search,” ACM Computing Surveys (CSUR),

2020. 106, 107, 219

[238] V. Dohnal, C. Gennaro, and P. Zezula, “Similarity join in metric spaces us-

ing ed-index,” in International Conference on Database and Expert Systems

Applications, pp. 484–493, Springer, 2003. 106, 109, 127

[239] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “idistance: An

adaptive b+-tree based indexing method for nearest neighbor search,” ACM

Transactions on Database Systems (TODS), vol. 30, no. 2, pp. 364–397,

2005. 106, 108, 109, 116, 127

[240] D. Novak, M. Batko, and P. Zezula, “Metric index: An efficient and scalable

solution for precise and approximate similarity search,” Information Systems,

vol. 36, no. 4, pp. 721–733, 2011. 107, 108, 109, 127

[241] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, “Efficient metric indexing

for similarity search and similarity joins,” IEEE Transactions on Knowledge

and Data Engineering, vol. 29, no. 3, pp. 556–571, 2015. 108, 109, 127

[242] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method

258

References

for similarity search in metric spaces,” in Vldb, vol. 97, pp. 426–435, 1997.

109, 110, 113

[243] M. Batko, C. Gennaro, and P. Zezula, “Similarity grid for searching in met-

ric spaces,” in Peer-To-peer, grid, and service-orientation in digital library

architectures, pp. 25–44, Springer, 2005. 109, 116, 127

[244] T. Skopal, J. Pokornỳ, M. Krátkỳ, and V. Snášel, “Revisiting m-tree building

principles,” in East European Conference on Advances in Databases and

Information Systems, pp. 148–162, Springer, 2003. 110

[245] M. R. Vieira, C. Traina, F. J. Chino, and A. J. Traina, “Dbm-tree: A dynamic

metric access method sensitive to local density data,” in In SBBD, Citeseer,

2004. 111, 127

[246] A. Ocsa and E. Cuadros-Vargas, “Dbm*-tree: an efficient metric access

method,” in Proceedings of the 45th annual southeast regional conference,

pp. 401–406, 2007. 111, 112, 127

[247] S. Jin, O. Kim, and W. Feng, “M x-tree: A double hierarchical metric in-

dex with overlap reduction,” in International Conference on Computational

Science and Its Applications, pp. 574–589, Springer, 2013. 112, 127, 132,

144, 207, 208, 213, 222

[248] H. Razente and M. C. Nardini Barioni, “Storing data once in m-tree and

pm-tree,” in International Conference on Similarity Search and Applications,

pp. 18–31, Springer, 2019. 113, 127

[249] J. P. Bachmann, “The superm-tree: Indexing metric spaces with sized ob-

jects,” arXiv preprint arXiv:1901.11453, 2019. 113, 127

259

References

[250] S. Brinis, C. Traina, and A. J. Traina, “Hollow-tree: a metric access method

for data with missing values,” Journal of Intelligent Information Systems,

vol. 53, no. 3, pp. 481–508, 2019. 113, 127

[251] E. Vidal, “New formulation and improvements of the nearest-neighbour ap-

proximating and eliminating search algorithm (aesa),” Pattern Recognition

Letters, vol. 15, no. 1, pp. 1–7, 1994. 114, 127

[252] E. V. Ruiz, “An algorithm for finding nearest neighbours in (approximately)

constant average time,” Pattern Recognition Letters, vol. 4, no. 3, pp. 145–

157, 1986. 114, 115

[253] M. L. Micó, J. Oncina, and E. Vidal, “A new version of the nearest-neighbour

approximating and eliminating search algorithm (aesa) with linear pre-

processing time and memory requirements,” Pattern Recognition Letters,

vol. 15, no. 1, pp. 9–17, 1994. 114, 127

[254] Y. Hanyf and H. Silkan, “A queries-based structure for similarity

searching in static and dynamic metric spaces,” Journal of King Saud

University-Computer and Information Sciences, vol. 32, no. 2, pp. 188–196,

2020. 114

[255] G. Ruiz, F. Santoyo, E. Chávez, K. Figueroa, and E. S. Tellez, “Extreme

pivots for faster metric indexes,” in International Conference on Similarity

Search and Applications, pp. 115–126, Springer, 2013. 114

[256] Y. Hanyf, H. Silkan, and H. Labani, “An improvable structure for similarity

searching in metric spaces: application on image databases,” in 2016 13th

International Conference on Computer Graphics, Imaging and Visualization

(CGiV), pp. 67–72, IEEE, 2016. 114, 127

260

References

[257] L. Micó, J. Oncina, and R. C. Carrasco, “A fast branch & bound nearest

neighbour classifier in metric spaces,” Pattern Recognition Letters, vol. 17,

no. 7, pp. 731–739, 1996. 115

[258] M. Batko, D. Novak, F. Falchi, and P. Zezula, “Scalability comparison

of peer-to-peer similarity search structures,” Future Generation Computer

Systems, vol. 24, no. 8, pp. 834–848, 2008. 115, 116, 128

[259] V. Dohnal, J. Sedmidubsky, P. Zezula, and D. Novák, “Similarity search-

ing: Towards bulk-loading peer-to-peer networks,” in 2008 IEEE 24th

International Conference on Data Engineering Workshop, pp. 378–385,

IEEE, 2008. 116, 128

[260] H. Balakrishnan, “Chord: A scalable peer-to-peer lookup service for internet

applications,” in ACM SIGCOMM, Citeseer, 2001. 116

[261] F. Falchi, C. Gennaro, and P. Zezula, “A content–addressable network for

similarity search in metric spaces,” in Databases, Information Systems, and

Peer-to-Peer Computing, pp. 98–110, Springer, 2006. 116, 128

[262] Z. Kouahla and A. Anjum, “A parallel implementation of ghb tree,”

in IFIP International Conference on Computational Intelligence and Its

Applications, pp. 47–55, Springer, 2018. 117, 128, 137, 193, 195

[263] K. Yang, X. Ding, Y. Zhang, L. Chen, B. Zheng, and Y. Gao, “Distributed

similarity queries in metric spaces,” Data Science and Engineering, vol. 4,

no. 2, pp. 93–108, 2019. 118, 128, 219

[264] P. Do and T. H. Phan, “A distributed m-tree for similarity search in large

multimedia database on spark,” in Handbook of Research on Multimedia

Cyber Security, pp. 146–164, IGI Global, 2020. 119, 128

261

References

[265] O. Jafari, P. Nagarkar, and J. Montaño, “Improving locality sensitive hash-

ing by efficiently finding projected nearest neighbors,” in International

Conference on Similarity Search and Applications, pp. 323–337, Springer,

2020. 121

[266] Z. Yao, J. Zhang, and J. Feng, “Nv-qalsh: An nvm-optimized implementation

of query-aware locality-sensitive hashing,” in International Conference on

Database and Expert Systems Applications, pp. 58–69, Springer, 2021. 121

[267] X. Lu, L. Zhu, Z. Cheng, J. Li, X. Nie, and H. Zhang, “Flexible online

multi-modal hashing for large-scale multimedia retrieval,” in Proceedings of

the 27th ACM international conference on multimedia, pp. 1129–1137, 2019.

122

[268] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad, “Resource provisioning

for iot services in the fog computing environment: An autonomic approach,”

Computer Communications, vol. 161, pp. 109–131, 2020. 132

[269] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited,

revisited: why and how you should (still) use dbscan,” ACM Transactions

on Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017. 139

[270] “Geographical coordinates.” http://data.public.lu/fr/datasets/r/

a7d551d7-f374-491aab93-63715b98e6dd,2019. 142, 212

[271] “Gps trajectories data set.” https://archive.ics.uci.edu/ml/datasets/

GPS+Trajectories. 142, 173

[272] “Ward.” https://people.eecs.berkeley.edu/~yang/software/WAR/

WARD1.zip,2019. 142, 173

262

http://data.public.lu/fr/datasets/r/a7d551d7-f374-491aab93-63715b98e6dd,2019
http://data.public.lu/fr/datasets/r/a7d551d7-f374-491aab93-63715b98e6dd,2019
https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories
https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories
https://people.eecs.berkeley.edu/~yang/software/WAR/WARD1.zip,2019
https://people.eecs.berkeley.edu/~yang/software/WAR/WARD1.zip,2019

References

[273] A. Y. Yang, R. Jafari, S. S. Sastry, and R. Bajcsy, “Distributed recognition of

human actions using wearable motion sensor networks,” Journal of Ambient

Intelligence and Smart Environments, vol. 1, no. 2, pp. 103–115, 2009. 142,

173

[274] “Smart home data.” https://www.kaggle.com/cnrieiit/mqttset/

version/1. 142

[275] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso, “Mqttset,

a new dataset for machine learning techniques on mqtt,” Sensors, vol. 20,

no. 22, p. 6578, 2020. 143, 197

[276] S. O. Al-mamory and Z. M. Algelal, “A modified dbscan clustering algo-

rithm for proactive detection of ddos attacks,” in 2017 Annual Conference

on New Trends in Information & Communications Technology Applications

(NTICT), pp. 304–309, IEEE, 2017. 165

[277] N. Mehta and S. Dang, “A review of clustering techiques in various applica-

tions for effective data mining,” International Journal of Research in IT &

Management, ISSN, pp. 2231–4334, 2011. 166

[278] K. Khettabi, Z. Kouahla, B. Farou, H. Seridi, and M. A. Ferrag, “Cluster-

ing and parallel indexing of big iot data in the fog-cloud computing level,”

Transactions on Emerging Telecommunications Technologies, p. e4484. 166,

170

[279] T. Liu, S. Qu, and K. Zhang, “A clustering algorithm for automatically

determining the number of clusters based on coefficient of variation,” in

Proceedings of the 2nd International Conference on Big Data Research,

pp. 100–106, 2018. 166

263

https://www.kaggle.com/cnrieiit/mqttset/version/1
https://www.kaggle.com/cnrieiit/mqttset/version/1

References

[280] K. Khettabi, Z. Kouahla, B. Farou, H. Seridi, and M. A. Ferrag, “Cluster-

ing and parallel indexing of big iot data in the fog-cloud computing level,”

Transactions on Emerging Telecommunications Technologies, p. e4484, 2022.

168

[281] R. Rossi and N. Ahmed, “The network data repository with interactive graph

analytics and visualization,” in Twenty-Ninth AAAI Conference on Artificial

Intelligence, 2015. 173

[282] H.-Y. Wu and C.-R. Lee, “Energy efficient scheduling for heterogeneous fog

computing architectures,” in 2018 IEEE 42nd annual computer software and

applications conference (COMPSAC), vol. 1, pp. 555–560, IEEE, 2018. 177

[283] K. Zhang, W. Zhou, S. Sun, and B. Li, “Multiple complementary inverted

indexing based on multiple metrics,” Multimedia Tools and Applications,

vol. 78, no. 6, pp. 7727–7747, 2019. 190

[284] https://zenodo.org/record/4972594#.YjBi3tXMLIX.

[285] https://http://ieee-dataport.org/documents/edge-iiotset-new\

comprehensive-realistic-cyber-security-dataset-iot-\

and-iiot-applications.

[286] https://www.kaggle.com/ranakrc/smart-building-system.

[287] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive

graph analytics and visualization,” in AAAI, 2015.

[288] “Road.” https://networkrepository.com/road.php.

264

https://zenodo.org/record/4972594##.YjBi3tXMLIX
https://http://ieee-dataport.org/documents/edge-iiotset-new\comprehensive-realistic-cyber- security-dataset-iot-\and-iiot-applications
https://http://ieee-dataport.org/documents/edge-iiotset-new\comprehensive-realistic-cyber- security-dataset-iot-\and-iiot-applications
https://http://ieee-dataport.org/documents/edge-iiotset-new\comprehensive-realistic-cyber- security-dataset-iot-\and-iiot-applications
https://www.kaggle.com/ranakrc/smart-building-system
https://networkrepository.com/road.php

List of Publications

International Publications

1. K. Khettabi, Z. Kouahla, B. Farou, H. Seridi and M.A. Ferrag, Cluster-

ing and parallel indexing of big IoT data in the fog-cloud com-

puting level, Transactions on Emerging Telecommunications Technologies,

p.e4484,2022, https://doi.org/10.1002/ett.4484.

2. K. Khettabi, Z. Kouahla, B. Farou, H. Seridi and M.A. Ferrag, A new

method for indexing continuous IoT data flows in metric space,

Internet Technology Letters, p.e391,2022 https://doi.org/10.1002/itl2.391.

3. K. Khettabi, Z. Kouahla, B. Farou, H. Seridi and M.A. Ferrag, Efficient

Method for Continuous IoT Data Stream Indexing in the Fog-

Cloud Computing Level, IEEE Transactions on Services Computing.

Current statue: Minor Revision (Under Review).

International Communications

K. Khettabi, Z. Kouahla, B. Farou and H. Seridi, QCCF-tree: A New Efficient

IoT Big Data Indexing Method at the Fog-Cloud Computing Level, 2021

IEEE International Smart Cities Conference (ISC2), p. 1-7, 2021, https://doi:

10.1109/ISC253183.2021.9562836.

265

List of Publications

National Communications

K. Khettabi, Z. Kouahla, B. Farou and H. Seridi, Comparison of indexing

methods for large IoT data sets. Informatics and Applied Mathematics (IAM2020)

Guelma, Algeria, 2020.

266

	List of Abbreviations
	Introduction
	Motivations
	Context of the Study
	Objectives and Contributions
	Overview of the Thesis

	I IoT data Indexing in Metric Space: Definitions and Related Work
	1 Metric Spaces
	1.1 Introduction
	1.2 Metric Space Definition
	1.3 Multidimensional Space Definition
	1.4 Distance Functions
	1.4.1 Minkowski distances

	1.5 Concepts of Ball and Hyperplane
	1.5.1 Ball partitioning
	1.5.2 Hyperplane partitioning

	1.6 Similarity Query Search
	1.6.1 Range query method
	1.6.2 Similarity join method
	1.6.3 Reverse nearest neighbor query method
	1.6.4 Nearest Neighbor query method

	1.7 Conclusion

	2 Internet of Things (IoT)
	2.1 Introduction
	2.2 Ubiquitous Computing in the Future Decade
	2.3 IoT Definition
	2.4 IoT Functional Blocks
	2.5 IoT Architecture
	2.6 IoT Applications
	2.6.1 Personal and Home
	2.6.2 Enterprise
	2.6.3 Public Service
	2.6.4 Mobile

	2.7 IoT Challenges
	2.7.1 Secure and privacy
	2.7.2 Availability
	2.7.3 Reliability
	2.7.4 Mobility
	2.7.5 Performance
	2.7.6 Management
	2.7.7 Scalability
	2.7.8 Interoperability
	2.7.9 Huge heterogeneous data

	2.8 Cloud Computing
	2.8.1 Cloud computing definition
	2.8.2 Cloud computing architecture
	2.8.3 Cloud computing challenges

	2.9 Fog Computing
	2.9.1 Fog computing definition
	2.9.2 Fog node
	2.9.3 Fog architecture
	2.9.4 Fog computing challenges

	2.10 Conclusion

	3 Clustering Methods of Big IoT Data
	3.1 Introduction
	3.2 Big Data Definition
	3.3 Big IoT Data Definition
	3.4 Clustering Methods
	3.4.1 Partitioning clustering algorithm
	3.4.2 Hierarchical clustering
	3.4.3 Grid-based algorithms
	3.4.4 Model-based algorithms
	3.4.5 Density-based algorithms

	3.5 Comparison Between Clustering Techniques
	3.6 Other Big IoT Data Analytics Methods
	3.6.1 Prediction method
	3.6.2 Association rule method
	3.6.3 Classification method

	3.7 Conclusion

	4 Big IoT Data Indexing
	4.1 Introduction
	4.2 Multidimensional Space Indexing Methods
	4.2.1 Hashing methods
	4.2.1.1 Locality Sensitive Hashing methods (LSH)
	4.2.1.1.a Centralized methods
	4.2.1.1.b Distributed methods

	4.2.1.2 Learning to Hash methods (L2H)
	4.2.1.2.a Centralized methods
	4.2.1.2.b Distributed methods

	4.2.2 Tree methods
	4.2.2.1 Centralized methods
	4.2.2.1.a Space partitioning methods
	4.2.2.1.b Data partitioning methods

	4.2.2.2 Distributed methods

	4.3 Metric Space Indexing Methods
	4.3.1 Centralized metric space indexing methods
	4.3.1.1 Space partitioning
	4.3.1.2 Data partitioning

	4.3.2 Distributed metric space indexing methods

	4.4 Comparative Analysis of Indexing Methods
	4.4.1 Multidimensional space indexing methods
	4.4.1.1 Hashing methods
	4.4.1.2 Tree methods

	4.4.2 Metric space indexing methods

	4.5 Conclusion

	II Propositions
	5 Parallel Construction of B3CF-trees
	5.1 Introduction
	5.2 Proposed Approach
	5.2.1 Clustering fog level
	5.2.2 Indexing fog level
	5.2.2.1 B3CF-tree build
	5.2.2.2 Parallel kNN seach in B3CF-tree

	5.3 Simulation and Results
	5.3.1 Evaluation and comparison of the index construction
	5.3.1.1 Number of calculated distances
	5.3.1.2 Number of comparisons
	5.3.1.3 Construction time

	5.3.2 Evaluation and comparison of the constructed index quality
	5.3.2.1 Number of nodes per level
	5.3.2.2 Data distribution in leaves
	5.3.2.3 Number of internal nodes
	5.3.2.4 Number of leaf nodes
	5.3.2.5 Tree height

	5.3.3 Evaluation and comparison of the kNN search
	5.3.3.1 Number of calculated distances
	5.3.3.2 Number of calculated comparisons
	5.3.3.3 Time of search
	5.3.3.4 Number of the visited leave

	5.4 Conclusion

	6 CV Method for Indexing Continuous IoT Data
	6.1 Introduction
	6.2 Proposed Approach
	6.2.1 Clustering method
	6.2.1.1 CV method
	6.2.1.2 Indexing method
	6.2.1.2.a Parallel kNN similarity queries search
	6.2.1.2.b CNI method
	6.2.1.2.c IEI method

	6.3 Simulation and Results
	6.3.1 Experimental setting
	6.3.2 Evolution of the number of indexes with the data stream
	6.3.3 Evaluation of indexes construction
	6.3.3.1 Number of calculated distances
	6.3.3.2 Number of calculated comparisons
	6.3.3.3 Time of indexing
	6.3.3.4 Energy consumption during the indexing

	6.3.4 Quality of the constructed BH-trees
	6.3.4.1 Average height of BH-trees
	6.3.4.2 Average number of internal nodes
	6.3.4.3 Number of nodes per level
	6.3.4.4 Data distribution in BH-tree leaves

	6.3.5 Evaluation of the parallel kNN search in BH-trees
	6.3.5.1 Number of calculated distances
	6.3.5.2 Number of calculated comparisons
	6.3.5.3 Time of search
	6.3.5.4 Energy consumption during the kNN search

	6.4 Conclusion

	7 TD Method for Indexing Continuous IoT Data
	7.1 Introduction
	7.2 Proposed Approach
	7.3 Simulation and Results
	7.3.1 Evolution of the number of GHT
	7.3.2 Evaluation of GHT construction
	7.3.2.1 Computed distances
	7.3.2.2 Computed comparisons
	7.3.2.3 Computing time

	7.3.3 Evaluation of parallel kNN search
	7.3.3.1 Distances in parallel kNN search
	7.3.3.2 Comparisons in parallel kNN search
	7.3.3.3 Time of kNN search
	7.3.3.4 Comparison of the time of kNN search between CV and TD method

	7.4 Conclusion

	8 Parallel kNN Search in QCCF-tree Nodes
	8.1 Introduction
	8.2 Proposed Approach
	8.2.1 QCCF-tree build
	8.2.2 Parallel kNN search in QCCF-nodes

	8.3 Simulation and Results
	8.3.1 Evaluation of the QCCF-tree construction
	8.3.1.1 Number of calculated distances
	8.3.1.2 Number of comparisons
	8.3.1.3 Construction time

	8.3.2 Evaluation of the in-node parallel kNN search
	8.3.2.1 Number of calculated distances
	8.3.2.2 Number of calculated comparisons
	8.3.2.3 Time of search

	8.3.3 Comparison between B3CF-tree and QCCF-tree

	8.4 Conclusion

	Conclusions
	References
	List of Publications

